

OpenL Tablets Rule Services
Usage and Customization Guide

Release 5.24

Document number: TP_OpenL_RuleServices_UCG_2.8_LSh

Revised: 09-08-2021

OpenL Tablets Documentation is licensed under a Creative Commons Attribution 3.0 United States License.

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/

Table of Contents

1 Preface ... 5

1.1 Audience .. 5
1.2 How This Guide Is Organized ... 5
1.3 Related Information .. 6
1.4 Typographic Conventions .. 6

2 Introduction ... 7

3 Rule Services Core .. 9

3.1 Adding Dependencies into the Project .. 9
3.2 Configuring Spring Integration for Rule Services Core .. 9

Adding a Bean Configuration File to the Spring Context Definition .. 9
Simple Java Frontend Implementation ... 9

3.3 Customizing and Configuring Rule Services Core .. 10

4 OpenL Tablets Rule Services Configuration .. 11

4.1 OpenL Tablets Rule Services Default Configuration .. 11
4.2 OpenL Tablets Rule Services Default Configuration Files .. 11
4.3 Service Manager .. 12
4.4 Configuration Points .. 12

Configuring a Data Source ... 13
Service Configurer ... 16
Service Exposing Methods .. 20
Configuring System Settings ... 27
CORS Filter Support ... 29
Logging Requests to OpenL Tablets Rule Services and Their Responds in a Storage .. 30

5 OpenL Tablets Rule Services Advanced Configuration and Customization ... 34

5.1 OpenL Tablets Rule Services Customization Algorithm ... 34
5.2 Data Source Listeners .. 35
5.3 Service Publishing Listeners .. 35
5.4 Dynamic Interface Support .. 35
5.5 Service Customization through Annotations ... 36

Interceptors for Methods .. 36
Method Return Type Customization through Annotations .. 39
REST Endpoint Customization through Annotations ... 39
Customization through Annotations for Dynamic Generated Interfaces ... 40

5.6 Variations ... 41
Variations Algorithm ... 41
Predefined Variations ... 42
Variations Factory ... 43
Enabling Variations Support .. 43

5.7 Customization of Log Requests to OpenL Tablets Rule Services and Their Responds in a Storage 44
Storage Service for Log Requests and Their Responds ... 44
Customization for Apache Cassandra ... 46
Customization for Elasticsearch .. 49

Appendix A: Tips and Tricks .. 50

OpenL Tablets Rule Services Usage and Customization

Using OpenL Tablets Rule Services from Java Code ... 50
Using OpenL Tablets REST Services from Java Code .. 51

Appendix B: Projects on the OpenL Tablets Rule Services Launch .. 52

Appendix C: Types of Exceptions in OpenL Tablets Rule Services ... 54

Appendix D: OpenAPI Support .. 56

Appendix E: Programmatically Deploying Rules to a Repository .. 57

Appendix F: Backward Compatibility Settings ... 58

Version in Deployment Name .. 58
Custom Spreadsheet Type .. 58

Appendix G: Deployment Project ZIP Structure ... 59

Single Project Deployment Structure ... 59
Multiple Projects Deployment Structure.. 59

Appendix H: Manifest File for Deployed Projects... 60

OpenL Tablets Rule Services Usage and Customization Preface

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 5 of 61

1 Preface
OpenL Tablets is a Business Rules Management System (BRMS) based on the tables presented in Excel
documents. Using unique concepts, OpenL Tablets facilitates treating business documents containing business
logic specifications as executable source code.

OpenL Tablets provides a set of tools addressing BRMS related capabilities including OpenL Tablets Rule Services
application designed for integration of business rules into different customers’ applications.

The goal of this document is to explain how to configure Rule Services Core, that is, configure OpenL Tablets
Rule Services or integrate the Rule Services Core module into the existing application, for different working
environments and how to customize the services to meet particular customer requirements.

The following topics are included in this chapter:

• Audience

• How This Guide Is Organized

• Related Information

• Typographic Conventions

1.1 Audience
This guide is targeted at rule developers who integrate the Rule Services Core module and set up, configure, and
customize OpenL Tablets Rule Services to facilitate the needs of customer rules management applications.

Basic knowledge of Java, Apache Tomcat, Ant, Maven, and Excel is required to use this guide effectively.

1.2 How This Guide Is Organized
Information on how to use this guide

Section Description

Introduction Provides overall information about OpenL Tablets Rule Services.

Rule Services Core Introduces Rule Services Core functionality.

OpenL Tablets Rule Services Configuration Describes the default configuration of OpenL Tablets Rule Services,
introduces Service Manager, and explains main configuration points.

OpenL Tablets Rule Services Advanced
Configuration and Customization

Describes OpenL Tablets Rule Services advanced services configuration
and customization.

Appendix A: Tips and Tricks Describes how to use OpenL Tablets Rule Services from Java code.

Appendix B: Projects on the OpenL Tablets
Rule Services Launch

Explains how projects appear upon OpenL Tablets Rule Services launch.

Appendix C: Types of Exceptions in OpenL
Tablets Rule Services

Explains typical exceptions in OpenL Tablets Rule Services.

Appendix D: OpenAPI Support Explains Swagger support in OpenL Tablets.

Appendix E: Programmatically Deploying Rules
to a Repository

Describes how to locate a project with rules in the database repository
without OpenL Tablets WebStudio deploy functionality.

Appendix F: Backward Compatibility Settings Describes backward compatibility settings.

OpenL Tablets Rule Services Usage and Customization Preface

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 6 of 61

Information on how to use this guide

Section Description

Appendix G: Deployment Project ZIP Structure Describes ZIP structure for single and multiple project deployment.

Appendix H: Manifest File for Deployed Projects Introduces manifest files created during project deployment from
OpenL Tablets WebStudio or using the OpenL Tablets Maven plugin.

1.3 Related Information
The following table lists sources of information related to contents of this guide:

Related information

Title Description

[OpenL Tablets WebStudio User Guide] Describes OpenL Tablets WebStudio, a web application for managing
OpenL Tablets projects through web browser.

[OpenL Tablets Reference Guide] Provides overview of OpenL Tablets technology, as well as its basic
concepts and principles.

[OpenL Tablets Installation Guide] Describes how to install and set up OpenL Tablets software.

http://openl-tablets.org/ OpenL Tablets open source project website.

1.4 Typographic Conventions
The following styles and conventions are used in this guide:

Typographic styles and conventions

Convention Description

Bold • Represents user interface items such as check boxes, command buttons, dialog boxes,
drop-down list values, field names, menu commands, menus, option buttons,
perspectives, tabs, tooltip labels, tree elements, views, and windows.

• Represents keys, such as F9 or CTRL+A.

• Represents a term the first time it is defined.

Courier Represents file and directory names, code, system messages, and command-line commands.

Courier Bold Represents emphasized text in code.

Select File > Save As Represents a command to perform, such as opening the File menu and selecting Save As.

Italic • Represents any information to be entered in a field.

• Represents documentation titles.

< > Represents placeholder values to be substituted with user specific values.

Hyperlink Represents a hyperlink. Clicking a hyperlink displays the information topic or external source.

[name of guide] Reference to another guide that contains additional information on a specific feature.

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20WebStudio%20User%20Guide.pdf
http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Reference%20Guide.pdf
http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Installation%20Guide.pdf
http://openl-tablets.org/

OpenL Tablets Rule Services Usage and Customization Introduction

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 7 of 61

2 Introduction
The majority of OpenL Tablets customers need to expose business rules as SOAP/REST web services. For this
purpose, OpenL Tablets Rule Services is provided. To meet requirements of various customer project
implementations, OpenL Tablets Rule Services provides the ability to dynamically create web services for
customer rules and offers extensive configuration and customization capabilities.

Overall architecture of OpenL Tablets Rule Services is expandable and customizable. All functionality is divided
into pieces; each of them is responsible for a small part of functionality and can be replaced by another
implementation if it is required. Usually, default implementation is enough to cover all requirements of most
customers.

Figure 1: Overall OpenL Tablets Rule Services architecture

OpenL Tablets Rule Services provides the following key features and benefits:

• easily integrating customer business rules into various applications running on different platforms

• using different data sources, such as a central OpenL Tablets production repository or file system of a proper
structure

• exposing multiple projects and modules as a single web service according to a project logical structure

The subsequent chapters describe how to set up a data source, Service Configurer, and a service exposing
method, and how to integrate OpenL Tablets into the existing application.

OpenL Tablets Rule Services is based on Rule Services Core and supports all features provided by the Rule
Services Core module.

OpenL Tablets Rule Services Usage and Customization Introduction

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 8 of 61

The following diagram identifies all components to be configured and customized.

Figure 2: Configurable and customizable components of Rule Services Core

OpenL Tablets Rule Services Usage and Customization Rule Services Core

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 9 of 61

3 Rule Services Core
This section introduces Rule Services Core functionality and includes the following topics:

• Adding Dependencies into the Project

• Configuring Spring Integration for Rule Services Core

• Customizing and Configuring Rule Services Core

3.1 Adding Dependencies into the Project
To use the Rule Services Core within Maven, declare the module dependencies in the project object model
(POM) as described in the following example:

<dependency>

 <groupId>org.openl.rules</groupId>

 <artifactId>org.openl.rules.ruleservice</artifactId>

 <version>${openl.version}</version>

</dependency>

If Apache Maven is not used in the project, it is recommended to download all dependencies via Maven and add
all downloaded dependencies into the existing project classpath.

3.2 Configuring Spring Integration for Rule Services Core
This section describes how to configure Spring and Rule Services Core integration and includes the following
topics:

• Adding a Bean Configuration File to the Spring Context Definition

• Simple Java Frontend Implementation

Adding a Bean Configuration File to the Spring Context Definition

To support the Rule Services Core features, add the openl-ruleservice-beans.xml bean configuration file into
the application Spring context definition. An example is as follows:
<import resource="classpath:openl-ruleservice-beans.xml" />

After adding the Rule Services Core beans, Spring configuration has a simple Java frontend service as a default
publisher for all OpenL Tablets services.

Simple Java Frontend Implementation

Spring configuration defined in the openl-ruleservice-beans.xml file registers the frontend bean with
default frontend implementation. This bean implements the
org.openl.rules.ruleservice.simple.RulesFrontend interface that is designed to interact with deployed
OpenL Tablets services.

Method in org.openl.rules.ruleservice.simple.RulesFrontend

Inceptor Description

OpenLService findServiceByName(String

serviceName)
Find registered OpenL Tablets service by name.

OpenL Tablets Rule Services Usage and Customization Rule Services Core

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 10 of 61

Method in org.openl.rules.ruleservice.simple.RulesFrontend

Inceptor Description

Object execute(String serviceName, String

ruleName, Class<?>[] inputParamsTypes, Object[]

params)

Invokes a rule with the defined parameter types and
parameter values from the deployed OpenL Tablets
service.

Object execute(String serviceName, String

ruleName, Object... params)
Invokes a rule with the defined parameter values from
the deployed OpenL service. Parameter types are
automatically defined from sent parameters.

Object getValue(String serviceName, String

fieldName)
Returns field value from the defined OpenL Tablets
service.

Collection<String> getServiceNames() Returns a list of registered OpenL Tablets services.

void registerService(OpenLService service) Registers the OpenL Tablets service.

void unregisterService(String serviceName) Unregisters the OpenL Tablets service.

<T> T buildServiceProxy(String serviceName,

Class<T> proxyInterface)
Builds a proxy for the OpenL Tablets service with a
defined interface.

T> T buildServiceProxy(String serviceName,

Class<T> proxyInterface, ClassLoader classLoader)
Builds a proxy for the OpenL Tablets service with a
defined interface and defined class loader.

The frontend bean can be injected to user’s bean to interact with deployed OpenL Tablets services.

OpenLServiceFactoryBean is a factory bean implementation used to create a proxy object to interact with
OpenL Tablets service. To create a proxy object, define a been factory as described in the following example:

<bean id="service1" class="org.openl.rules.ruleservice.simple.OpenLServiceFactoryBean">

 <!-- <property name="rulesFrontend" ref="frontend"/> optional. For custom

implementation of RulesFrontend -->

 <property name="serviceName" value="service1"/>

 <property name="proxyInterface" value="com.myproject.Service1"/>

</bean>

In this example, serviceName is a name of the deployed OpenL Tablets service and proxyInterface is an
interface for building a proxy object. All invocations of proxy object methods are delegated to the execute
method of the frontend bean. The invoked method name with its parameters is used as input parameters for
the execute method.

Note: Proxy beans and proxy objects created by frontend bean are automatically updated if the OpenL Tablets service is
redeployed into a data source. Nevertheless, these objects are not working while the project is redeployed. To
synchronize this process, use Service Publisher listeners described in further sections.

3.3 Customizing and Configuring Rule Services Core
The Rule Services Core module configuration features resemble configuration features for OpenL Tablets Rule
Services. The OpenL Tablets Rule Services customization and configuration information is provided in this
document and can be applied to Rule Services Core in the same way. For the list of components supported only
by OpenL Tablets Rule Services, see diagrams in Introduction.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 11 of 61

4 OpenL Tablets Rule Services Configuration
OpenL Tablets Rule Services architecture allows extending mechanisms of services loading and deployment
according to the particular project requirements.

This section describes OpenL Tablets Rule Services configuration and includes the following topics:

• OpenL Tablets Rule Services Default Configuration

• OpenL Tablets Rule Services Default Configuration Files

• Service Manager

• Configuration Points

4.1 OpenL Tablets Rule Services Default Configuration
All OpenL Tablets Rule Services configuration is specified in Spring configuration files and
application.properties files. The application.properties file is located inside the application .war file

(inside WEB-INF/classes folder), in a user’s directory or in a working directory.

The configuration file located inside the .war file contains default settings for all properties. Use it as a
reference of possible settings and redefine as required in your configuration file, such as the
application.properties file located in a user’s home directory.

All settings used in application.properties file can be defined as JVM options. In this case, JVM options
override settings defined in files.

By default, OpenL Tablets Rule Services is configured as follows:

1. A data source is configured as FileSystemDataSource located in the "${user.home}/.openl/datasource"
folder.

2. All services are exposed as REST/SOAP services using the CXF framework.

3. LastVersionProjectsServiceConfigurer is used as a default service configurer that takes the last version
of each deployment and creates the service for each project using all modules contained in the project.

4.2 OpenL Tablets Rule Services Default Configuration Files
If necessary, modify the OpenL Tablets Rule Services configuration by overriding the existing configuration files.
All overridden Spring beans must be defined in the openl-ruleservice-override-beans.xml file. The
following table lists Spring configuration files used in OpenL Tablets Rule Services:

Spring configuration files used in OpenL Tablets Rule Services

File Description

openl-ruleservice-beans.xml Main configuration file that includes all other
configuration files. This file is searched by OpenL
Tablets Rule Services in the classpath root.

openl-ruleservice-core-beans.xml Configuration for ServiceManager and
InstantiationFactory.

openl-ruleservice-datasource-beans.xml Configuration for data sources.

openl-ruleservice-loader-beans.xml Configuration for rules loader.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 12 of 61

Spring configuration files used in OpenL Tablets Rule Services

File Description

openl-ruleservice-publisher-beans.xml Common publisher configurations.

openl-ruleservice-webservice-publisher-beans.xml Configuration for web services publisher (SOAP)

openl-ruleservice-jaxrs-publisher-beans.xml Configuration for RESTful services publisher.

openl-ruleservice-rmi-publisher-beans.xml Configuration for RMI services publisher.

openl-ruleservice-kafka-publisher-beans.xml Configuration for RMI services publisher.

openl-ruleservice-conf-beans.xml Configuration for Service Configurer.

openl-ruleservice-store-log-data-beans.xml Configuration for external request and response
storages.

application.properties Main configuration file containing properties for
OpenL Tablets Rule Services configuration.

For more information on configuration files, see Configuration Points.

4.3 Service Manager
Service Manager is the main component of OpenL Tablets Rule Services frontend joining all major parts, such as
a loader, rule service publishers, and Service Configurer. For more information on OpenL Tablets Rule Services
frontend components, see [OpenL Tablets Developer Guide].

Service Manager manages all currently running services and intelligently controls all operations for deploying,
undeploying, and redeploying the services. These operations are only performed in the following cases:

• initial deployment at application startup

• processing after data source update

Service Manager always acts as a data source listener as described in further sections of this chapter.

4.4 Configuration Points
Any part of OpenL Tablets Rule Services frontend can be replaced by the user’s own implementation. For more
information on the system architecture, see [OpenL Tablets Developer Guide].

If the common approach is used, the following components must be configured:

Configuration components

Component Description

Data source Informs the OpenL Tablets system where to retrieve user’s rules.

Service exposing method Defines the way services are exposed, for example, as a web service or a simple Java
framework.

The following sections describe how to configure these components:

• Configuring a Data Source

• Service Configurer

• Service Exposing Methods

http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Developer%20Guide.pdf
http://openl-tablets.sourceforge.net/docs/openl-tablets/latest/OpenL%20Tablets%20-%20Developer%20Guide.pdf

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 13 of 61

• Configuring System Settings

• CORS Filter Support

• Logging Requests to OpenL Tablets Rule Services and Their Responds in a Storage

Note: There is a specific rule of parsing parameter names in methods. The algorithm checks the case of the second letter in
a word and sets the first letter case the same as for the second letter. For example, parameters for MyMethod
(String fParam, String Sparam) in REST requests are defined as FParam and sparam.

Configuring a Data Source

The system supports the following data source implementations:

• File System

• Relational Database

• Amazon AWS S3

• GIT

• Classpath JAR

File System

Using a file system as a data source for projects means that projects are stored in a local folder. By default, the
configuration folder represents a single deployment containing all the projects and does not support multiple
deployments and project versions. This data source is used by default.

To configure a local file system as a data source, proceed as follows:

1. In application.properties, set production-repository.factory = repo-file.

By default, the ${user.home}/.openl/openl-ruleservice/datasource folder is used as a local folder for
projects.

2. To enable versioning support for deployment, set the
ruleservice.datasource.filesystem.supportVersion setting to true.

Note: For proper parsing of Java properties file, the path to the folder must be defined with a slash (‘/’) as the folders
delimiter. Back slash “\” is not allowed.

Relational Database

To use a relational database repository as a data source, proceed as follows:

1. Add the appropriate driver library for a database.

For example, for MySQL 5.6, it is the mysql-connector-java-5.1.31.jar.

2. In the application.properties file, set repository settings as follows:

1. Set production-repository.factory = repo-jdbc.

2. Set the value for production-repository.uri according to the database as follows:

URL value for databases

Database URL value

MySQL,
MariaDB

jdbc:mysql://[host][:port]/[schema]

Oracle jdbc:oracle:thin:@//[HOST][:PORT]/SERVICE

MS SQL jdbc:sqlserver://[serverName[\instanceName][:portNumber]][;property=value[;p

roperty=value]]

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 14 of 61

PostrgeS
QL

jdbc:postrgesql://[host][:port]/[schema]

For example, for MySQL, production-repository.uri =
jdbc:mysql://localhost:3306/deployment-repository.

3. Set login and password for a connection to the database in production-repository.login and
production-repository.password settings.

Note: The password must be encoded via Base64 encoding schema if the repository.encode.decode.key property is
not empty.

production-repository.factory = repo-jdbc

production-repository.uri = jdbc:h2:mem:repo;DB_CLOSE_DELAY=-1

production-repository.login = root

production-repository.password = admin

Secret key for password code/decode

secret.key=

#secret.cipher=AES/CBC/PKCS5Padding

Amazon AWS S3

To use an AWS S3 repository as a data source, proceed as follows:

1. To build a customized version of OpenL Tablets Rule Services with dependencies on
*org.openl.rules.repository.aws, create a pom.xml file with the following content:
<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-

v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.openl</groupId>

 <artifactId>webservice-aws</artifactId>

 <packaging>war</packaging>

 <version>1.0-beta</version>

 <properties>

 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <org.openl.version>#Define OpenL Tablets version here#</org.openl.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.openl.rules</groupId>

 <artifactId>org.openl.rules.repository.aws</artifactId>

 <version>${org.openl.version}</version>

 </dependency>

 <dependency>

 <groupId>org.openl.rules</groupId>

 <artifactId>org.openl.rules.ruleservice.ws</artifactId>

 <type>war</type>

 <version>${org.openl.version}</version>

 </dependency>

 </dependencies>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-databind</artifactId>

 <version>2.9.5</version>

 </dependency>

 <dependency>

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 15 of 61

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-annotations</artifactId>

 <version>2.9.5</version>

 </dependency>

 <dependency>

 <groupId>commons-codec</groupId>

 <artifactId>commons-codec</artifactId>

 <version>1.11</version>

 </dependency>

 </dependencies>

 </dependencyManagement>

</project>

2. Set the following properties in the application.properties file:
production-repository.factory = repo-aws-s3

production-repository.bucket-name = yourBucketName

production-repository.region-name = yourS3Region

production-repository.access-key = yourAccessKey

production-repository.secret-key = yourSecretKey

GIT

To use a Git repository as a data source, proceed as follows:

1. To build a customized version of OpenL Tablets Rule Services with dependencies on
*org.openl.rules.repository.git, create a pom.xml file with the following content:
<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-

v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.openl</groupId>

 <artifactId>webservice-git</artifactId>

 <packaging>war</packaging>

 <version>1.0-beta</version>

 <properties>

 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <org.openl.version>>#Define OpenL Tablets version here#</org.openl.version>

 </properties>

 <dependencies>

 <dependency>

 <groupId>org.openl.rules</groupId>

 <artifactId>org.openl.rules.repository.git</artifactId>

 <version>${org.openl.version}</version>

 </dependency>

 <dependency>

 <groupId>org.openl.rules</groupId>

 <artifactId>org.openl.rules.ruleservice.ws</artifactId>

 <type>war</type>

 <version>${org.openl.version}</version>

 </dependency>

 </dependencies>

</project>

2. Build it with Maven: mvn clean package.

3. Replace webservice.war with the war file you built.

4. Set the following properties to the application.properties file (change necessary fields):
production-repository.factory = repo-git

production-repository.uri = https://github.com/<your-name>/your-repo.git

production-repository.login = your-login

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 16 of 61

production-repository.password = your-password

5. Additionally, to override default values, add these optional properties:

Local path for Git repository.

production-repository.local-repository-path = ${ruleservice.openl.home}/git

The branch where deployed projects can be found.

production-repository.branch = master

Committer's display name. If null, username will be “OpenL_Deployer”.

production-repository.user-display-name =

Committer's email. If null, email will be empty.

production-repository.user-email =

Repository connection timeout in seconds. Must be greater than zero.

production-repository.connection-timeout = 60

Repository changes check interval in seconds. Must be greater than 0.

production-repository.listener-timer-period = 10

Classpath JAR

If rule projects with the rules.xml project descriptor are packed into a JAR file and placed in the classpath,
these projects are deployed in the configured data source at the application launch.

Proceed as follows:

1. Put the JAR file with the project to \<TOMCAT_HOME>\webapps\<rule services file name>\WEB-INF\lib.

2. In the application.properties file, set up the ruleservice.datasource.deploy.classpath.jars =
true.

By default, this property is set to true.

Note: Project deployment is skipped if the data source already contains the project with the same name.

Service Configurer

This section introduces Service Configurer and includes the following topics:

• Understanding Service Configurer

• Deployment Configuration File

• Service Description

• Configuring the Deployment Filter

Understanding Service Configurer

Service Configurer resolves a list of services to be exposed, such as modules contained in each service, service
interface, and runtime context provision.

Modules for a service can be retrieved for different projects. Each deployment containing in a data source has a
set of properties and can be represented in several versions. Deployment consists of projects that also have
properties and contain some modules. There can be only one version of a specific project in the deployment.

Each module for a service can be identified by the deployment name, deployment version, project name inside
the deployment, and module name inside the project.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 17 of 61

Different module gathering strategies according to their needs can be implemented by extending
org.openl.rules.ruleservice.conf.ServiceConfigurer interface. Users can choose deployments and
projects with concrete values of a specific property, such as service for some LOB property or service containing
modules with an expiration date before a specific date, or versions of deployments, or both these approaches.

OpenL Tablets users typically need web services containing several rule projects or modules. In this case,
multiple modules can be united in one service using the
org.openl.rules.ruleservice.core.ServiceDescription service description. Service description contains
information about the required service, such as the service name, URL, and service class, and can be expanded
to contain new configurations. To instantiate several modules, users can rely on the OpenL MultiModule
mechanism that combines a group of modules into a single rules engine instance.

The org.openl.rules.ruleservice.conf.LastVersionProjectsServiceConfigurer default implementation
of Service Configurer retrieves all deployments from a data source and publishes the latest versions of projects
with unique version from the corresponding deployment configuration file rules-deploy.xml. In other words,
if the version tag is not used in service description files for the same project versions, only one latest
deployment version is published; otherwise, all deployment versions with unique version tag are published.

Deployment Configuration File

Default implementation of Service Configurer uses the rules-deploy.xml deployment configuration file from
the project root folder. This file is created manually or via OpenL Tablets WebStudio. An example of the rules-
deploy.xml file is as follows:

<rules-deploy>

 <isProvideRuntimeContext>true</isProvideRuntimeContext>

 <isProvideVariations>false</isProvideVariations>

 <serviceName>myService</serviceName>

 <serviceClass>com.example.MyService </serviceClass>

 <url>com.example.MyService</url>

 <publishers>

 <publisher>RESTFUL</publisher>

 </publishers>

 <configuration>

 <entry>

 <string>someString</string>

 <string>someString</string>

 </entry>

 </configuration>

</rules-deploy>

When deploying a project to OpenL Tablets Rule Services, if the rules-deploy.xml file is missing or does not
contain the SOAP service defined, only RESTful service is deployed.

Project configuration

Tag Description Required

isProvideRuntimeContext Identifies, if set to true, that a project provides a runtime context.

The default value is defined in the application.properties file.

No

isProvideVariations Identifies, if set to true, that a project provides variations.

The default value is defined in the application.properties file.

No

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 18 of 61

Project configuration

Tag Description Required

serviceName Defines a service name.

The service name defined in the file is displayed for a deployed
project in the embedded mode only. Otherwise, the service name is
derived from its path. A default pattern is
"{deployment_configuration_name}/{project_name}".

No

serviceClass Defines a service class. If it is not defined, a generated class is used. No

rmiServiceClass Define a service class to be used by RMI publisher. Yes, if
RMI is
used

version Defines a service version. No

url Defines URL for a service. No

annotationTemplateClassName Defines an interface being used as a template to annotate dynamic
generated interface class.

No

groups Defines a list of comma-separated groups used for this project. No

publishers Defines a list of publishers for a project. No

configuration Is used as extension point for custom service configuration. No

lazy-modules-for-compilation Defines a list of modules to be loaded in case lazy loading
mechanism is used. Module names can contain Ant path
expressions.

No

jackson.serializationInclusion Serialization option for JSON based services. No

jackson.defaultDateFormat Used to define date format is used in JSON. No

jackson.caseInsensitiveProperties Deserialization option for JSON based services. No

jackson.failOnUnknownProperties Deserialization option for JSON based services. For more
information on this property, see Configuring JSON Payload
Serialization and Deserialization.

No

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 19 of 61

Project configuration

Tag Description Required

jackson.propertyNamingStrategy Used to configure names of output spreadsheet attributes.

Supported attribute name strategies are as follows:

Strategy Description

org.openl.rules.serialization.
spr.LowerCamelCaseStrategy

All name elements, excluding the
first one, start with a capitalized
letter, followed by lowercase
ones. The first letter is lowercased,
and there are no separators.

Example: columnName.

org.openl.rules.serialization.
spr.SnakeCaseStrategy

All letters are lowercase with
underscores used as separators
between name elements.

Example: columnname_rowname.

org.openl.rules.serialization.
spr.LowerCaseStrategy

All letters are lowercase with no
separators.

Example: columnname.

org.openl.rules.serialization.
spr.UpperCamelCaseStrategy

All name elements start with a
capitalized letter, followed by
lowercase ones, and there are no
separators.

Example: ColumnNameRowName.

rootClassNamesBinding Defines a list of classes for automatically define inheritance between
defined classes and properly registering them.

No

Service Description

Commonly each service is represented by rules and service interface and consists of the following elements:

Service description

Service Description

Service name Unique service identifier. If a service name is defined in the rules-
deploy.xml file, it is displayed for the service in the embedded mode only.
Otherwise, the service name is generated from the path as
"{deployment_configuration_name}/{project_name}".

Service URL URL path for the service. It is absolute for the console start and relative to the
context root for the ws.war case.

Service class Interface of the service to be used at the server and the client side.

Version Number of the service version.

Rules Module or a set of modules to be combined as a single rules module.

Provide runtime context flag Identifier of whether the runtime context must be added to all rule methods. If

it is set to true, the IRulesRuntimeContext argument must be added to

each method in the service class.

Support variations flag (optional) Identifier of whether the current service supports variations. For more
information on variations, see Variations.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 20 of 61

Configuring the Deployment Filter

The system provides the ability to set up the Deployment Filter to filter deployments from configured data
source when several applications use the same data source. Filtering selects deployments by name.

The property ruleservice.datasource.deployments is defined in the application.properties file and it is
disabled by default.

To enable the Deployment Filter, set the exact deployment names using a comma separator, or use the wildcard
character to enable the filter to match patterns in the deployment name:

ruleservice.datasource.deployments = foo-deployment, bar-*

The wildcard character “*” matches any characters in the deployment name as follows:

• If a single asterisk is used, any of the foo-*, *deployment.single wildcard character patterns detect foo-
deployment.

• If multiple asterisks are used, any of the *deploy*, *deployment* single wildcard character patterns detect
foo-deployment.

Service Exposing Methods

Common flow of service exposing is as follows:

1. Retrieve service descriptions from a data source.

2. Undeploy the currently running services that are not in services defined by Service Configurer.

Some services can become unnecessary in the new version of the product.

3. Redeploy currently running services that are still in services defined by Service Configurer, such as service
update.

4. Deploy new services not represented earlier.

To set the method of exposing services, configure a Spring bean with the ruleServiceManager name in openl-
ruleservice-publisher-beans.xml.

This bean supports mapping a concrete publisher for a service configuration or uses a default publisher if the
publisher is not defined in the rules-deploy.xml deployment configuration file.

To add a publisher, use any framework by implementations of
org.openl.rules.ruleservice.publish.RuleServicePublisher interface and register it in the
ruleServicePublisher bean.

OpenL Tablets Rule Services supports following publisher implementations out of the box:

• CXF SOAP Publisher

• CXF REST Publisher

• RMI Publisher

• Kafka Publisher

CXF SOAP Publisher

CXF SOAP Publisher implementation class is
org.openl.rules.ruleservice.publish.JAXWSRuleServicePublisher. The Spring configuration for CXF
Web Service Publisher is defined in the openl-ruleservice-webservice-publisher-beans.xml file.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 21 of 61

Note: The full web service address is webserver_context_path/ws_app_war_name/url_specified_by_you in the
rules-deploy.xml file or deployment name/project name if not specified.

Configuring Aegis Databinding

The setting is defined in the application.properties file. The default values are as follows:

ruleservice.aegisbinding.readXsiTypes = true

ruleservice.aegisbinding.writeXsiTypes = true

ruleservice.aegisbinding.ignoreNamespaces = false

For more information on Aegis databinding, see CXF Aegis databinding documentation.

CXF REST Publisher

CXF REST Service Publisher implementation class is
org.openl.rules.ruleservice.publish.JAXRSRuleServicePublisher. The Spring configuration for this
publisher is located in the openl-ruleservice-jaxrs-publisher-beans.xml file.

Note: The full web service address is webserver_context_path/ws_app_war_name/REST/url_specified_by_you
in rules-deploy.xml file or deployment name/project name if not specified. If a project is not
deployed to CXF SOAP Publisher at the same time, the service address will be without the REST part in the address.

The following URL can be used to retrieve a list of methods for a service:

webserver_context_path/ws_app_war_name/admin/services/{serviceName}/methods/

Configuring HTTP Status for Responses

The system can be configured to use the HTTP 200 status for all RESTful services requests even if service
execution fails. To enable this feature, set ruleservice.jaxrs.responseStatusAlwaysOK = true in the
application.properties file.

Defining a Date Format for JSON Serialization and Deserialization

REST services support the ISO-8601 standard for date type representation and accept the yyyy-MM-
dd'T'HH:mm:ss.SSS format. Time and time zones are optional in requests. Time zones in ISO-8601 are
represented as local time, with the location unspecified, as UTC, or as an offset from UTC. For more information
on the ISO-8601 standard, see https://en.wikipedia.org/wiki/ISO_8601.

Date format can be defined in the ruleservice.jackson.defaultDateFormat property, in the
application.properties file. The default date format value is as follows:

ruleservice.jackson.defaultDateFormat=yyyy-MM-dd'T'HH:mm:ss.SSS

This value is used by the system for all published projects that do not have the date format defined in the
deployment configuration rules-deploy.xml file.

The jackson.defaultDateFormat value must be in the same syntax of the date time pattern as
SimpleDateFormat described in https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html.

Note that changing this setting affects all projects in the system. To change the date format for a particular
project, modify the date format in the rules-deploy.xml deployment configuration file as follows:

<rules-deploy>

 ….

 <configuration>

 <entry>

 <string>jackson.defaultDateFormat</string>

 <string>yyyyMMddHHmmss</string>

 </entry>

https://en.wikipedia.org/wiki/ISO_8601
https://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 22 of 61

 </configuration>

</rules-deploy>

Configuring JSON Payload Serialization and Deserialization

Default JSON properties serialization and deserialization behavior can be changed via ruleservice.jackson.
serializationInclusion, ruleservice.jackson.caseInsensitiveProperties, and
ruleservice.jackson.failOnUnknownProperties in the application.properties file. The default value for
this property is set as follows:

ruleservice.jackson.serializationInclusion = USE_DEFAULTS

ruleservice.jackson.caseInsensitiveProperties = false

ruleservice.jackson.failOnUnknownProperties = false

These values are used by the system for all published projects that do not have these properties defined in the
rules-deploy.xml file.

ruleservice.jackson. serializationInclusion is used for JSON serialization. Supported values are as
follows:

serializationInclusion property values

Value Description

ALWAYS A property is always included, regardless of the property value.

NON_ABSENT Properties with no null values including no content null values are used.

NON_DEFAULT All values except for the following are included:

• values considered empty

• primitive or wrapper default values

• date and time values that have a timestamp of `0L`, that is, `long` value of milliseconds since epoch

NON_EMPTY Properties with empty values are excluded.

NON_NULL Properties with non-null values are included.

USE_DEFAULTS Defaults settings or annotations either from the class level or ObjectMapper level are used.

For more information on serialization values, see https://fasterxml.github.io/jackson-
annotations/javadoc/2.6/com/fasterxml/jackson/annotation/JsonInclude.Include.html.

JSON payload of the same datatype with different serializationInclusion property values are as follows:

Figure 3: JSON payload of the same datatype with different serializationInclusion values

https://fasterxml.github.io/jackson-annotations/javadoc/2.6/com/fasterxml/jackson/annotation/JsonInclude.Include.html
https://fasterxml.github.io/jackson-annotations/javadoc/2.6/com/fasterxml/jackson/annotation/JsonInclude.Include.html

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 23 of 61

ruleservice.jackson.caseInsensitiveProperties is a JSON deserialization. The system matches JSON
property names to a Java class ignoring case sensitivity if this property is enabled.

ruleservice.jackson.failOnUnknownProperties is a JSON deserialization. The system fails if a missing field
in a datatype is present in the JSON request. By default, the system ignores JSON properties in a request that
cannot be matched to existing Java classes.

Note: Changing these settings affects all projects in the system. To modify serializationInclusion for a particular
project, modify the rules-deploy.xml deployment configuration file as follows:

<rules-deploy>

 …

 <configuration>

 <entry>

 <string>jackson.serializationInclusion</string>

 <string>NON_ABSENT</string>

 </entry>

 <entry>

 <string>jackson.failOnUnknownProperties</string>

 <string>true</string>

 </entry>

 <entry>

 <string>jackson.caseInsensitiveProperties </string>

 <string>NON_ABSENT</string>

 </entry>

 </configuration>

</rules-deploy>

OpenL Tablets Rule Services uses a Jackson library to serialize an object to JSON and deserialize JSON to an
object. This library supports configuration via MixIn annotation. For more information on MixIn annotations, see
Jackson documentation https://github.com/FasterXML/jackson-docs/wiki/JacksonMixInAnnotations.

To register MixIn classes for a project, annotate the MixIn class with the
org.openl.rules.ruleservice.databinding.annotation.MixInClassFor or
org.openl.rules.ruleservice.databinding.annotation.MixInClassFor annotation and add this class to
the rules-deploy.xml deployment configuration file as described further in this section. These annotations
expect the class name that is used for registering MixIn class in the object mapper.

JAXB annotations is supported in the MixIn classes out of the box because the system is configured to use
com.fasterxml.jackson.module.jaxb.JaxbAnnotationIntrospector as a secondary annotation interceptor
in the object mapper for the deployed service.

Example of the Jackson MixIn class implementation is as follows:
@MixInClass(“org.openl.generated.beans.Customer”)

public abstract class CustomerMixIn {

 @JsonProperty(required = true)

 protected Integer customerID;

 @JsonIgnore

 protected Integer privateField;

 @JsonFormat(pattern = “yyyy-MM-dd”)

 protected Date dob;

 @JsonProperty(“genderCd”)

 @ApiModelProperty(example = “male”)

 protected String gender;

}

https://github.com/FasterXML/jackson-docs/wiki/JacksonMixInAnnotations

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 24 of 61

Example of the deployment configuration file is as follows:
<rules-deploy>

 …

 <configuration>

 <entry>

 <string>rootClassNamesBinding</string>

 <string>org.example.custom.mixin.CustomerMixIn</string>

 </entry>

 </configuration>

</rules-deploy>

RMI Publisher

RMI Service Publisher implementation class is
org.openl.rules.ruleservice.publish.RmiRuleServicePublisher. The Spring configuration for this
publisher is located in the openl-ruleservice-rmi-publisher-beans.xml file.

Note: The full RMI service address is rmi://hostname:port/rmi name specified by you in rules.xml file.

The appropriate port and host name for RMI can be defined in the application.properties file.

By default, these properties are defined as follows:

ruleservice.rmiPort = 1099 // Port for RMI

ruleservice.rmiHost = 127.0.0.1 // Used as host for RMI

Kafka Publisher

The system handles messages from the Kafka input topic and publishes rules calculation results to an output
topic or dead letter topic if any error occurs during message processing.

Only Kafka brokers 0.11.0 and later are supported.

The following topics are included in this section:

• Modes for Exposing Services

• Supported Message Headers

• Custom Message Serialization

• Date Format Definition and JSON Serialization and Deserialization Configuration

• Spring Kafka Integration Support

Modes for Exposing Services

Kafka Publisher allows exposing the services in the following modes:

Modes for exposing OpenL Tablets services

Mode Description

A user configures
Kafka settings for
each rules method to
expose as a service.

• All messages in all input topics belong to one rule method and have the same format.

• One Kafka Consumer and two Kafka producers, that is, output topic and dead letter topic,
are created for each exposed method.

• Input topic, output topic, and DLT must be created for each method.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 25 of 61

Modes for exposing OpenL Tablets services

Mode Description

A user configures
Kafka settings for a
service.

• All methods from this service are exposed as services.

• Messages in the input topic belong to different rule methods and are of different format,
depending on the method input parameters.

• The method name is set via Kafka Headers.

• One Kafka consumer and two producers, that is, output topic and dead letter topic, are
created for a service.

• One input topic, one output topic, and one DLT is enough for the OpenL Tablets service.

• A service can be exposed in both modes at the same time.

The following topics are included in this section:

• Enabling Kafka Publisher for a Service

• Configuring Application Level Kafka Settings

• Configuring Service Level Kafka Settings

Enabling Kafka Publisher for a Service

By default, Kafka Publisher is not used for deployed projects. To enable it, add the Kafka Publisher type to
rules-deploy.xml as follows:

<rules-deploy>

 …

 <publishers>

 <publisher>KAFKA</publisher>

 </publishers>

 …

</rules-deploy>

Configuring Application Level Kafka Settings

OpenL Tablets Rule Services can be configured via the application.properties file or environment variables.
Kafka-related settings are as follows:

Application level Kafka settings

Property name Default value Description

ruleservice.kafka.bootstrap.servers localhost:9092 Comma separated Kafka broker hosts.

ruleservice.kafka.group.id openl-webservice Group name for all Kafka consumers created by the
application.

Configuring Service Level Kafka Settings

If an OpenL Tablets service is configured to use Kafka Publisher, the OpenL Tablets service must contain the
kafka-deploy.yaml file in the same place where rules-deploy.xml deployment configuration is located.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 26 of 61

Service level Kafka settings

Kafka settings for a service Kafka setting for each rules method that want to expose as a service

service:
 in.topic.name: in-topic-for-service
 out.topic.name: out-topic-for-service
 dlt.topic.name: dlt-topic-for-service
 consumer.configs:
 auto.offset.reset: earliest

method.configs:

 - method.name: method1

 in.topic.name: in-topic-for-method1

 out.topic.name: out-topic-for-method1

 dlt.topic.name: dlt-topic-for-method1

 - method.name: method2

 in.topic.name: in-topic-for-method2

 out.topic.name: out-topic-for-method2

 dlt.topic.name: dlt-topic-for-method2

 consumer.configs:

 auto.offset.reset: earliest

Configuring Kafka consumers or Kafka producer is supported via producer.configs, consumer.configs, and
dlt.producer.configs. These settings can be used for a service or each method.

The default configuration for all methods or service is supported if producer.configs, consumer.configs and
dlt.producer.configs are defined at the top level of kafka-deploy.yaml.

An example of consumer.configs is as follows:

auto.offset.reset: earliest

An example of the method.configs is as follows:

 - method.name: method1

 in.topic.name: in-topic-for-method1

 out.topic.name: out-topic-for-method1

 dlt.topic.name: dlt-topic-for-method1

 - method.name: method2

 in.topic.name: in-topic-for-method2

 out.topic.name: out-topic-for-method2

 dlt.topic.name: dlt-topic-for-method2

Kafka consumers for all methods are configured to use auto.offset.reset = earliest as described in the
previous example.

For a complete list of configuration properties, see https://kafka.apache.org/documentation/#consumerconfigs
and https://kafka.apache.org/documentation/#producerconfigs.

Supported Message Headers

Configurations out.topic.name and dlt.topic.name are optional, and the system can handle an output topic
name and DLT topic name from record headers. A list of supported headers is as follows:

Supported message headers

Header name Description

methodName Method name.

If an OpenL Tablets service is configured to use one input topic for all rule methods, this
header defines a rule method name to invoke. If a rule method name is not unique in
rules, for example, when overloading is used for a method, methodParameters
header must be used as well.

methodParameters Comma separated list of rule method types. Wildcards are supported.

kafka_correlationId Information to correlate requests and replies.

kafka_replyPartition Partition number on which to send the reply.

https://kafka.apache.org/documentation/#consumerconfigs
https://kafka.apache.org/documentation/#producerconfigs

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 27 of 61

Supported message headers

Header name Description

kafka_replyTopic Default reply topic. If this header is defined, the output topic from a header is used by
Kafka Publisher for this message.

kafka_replyDltPartition Partition number on which to send the reply DLT topic.

kafka_replyDltTopic Default reply DLT topic. If this header is defined, the DLT topic from a header is used by
Kafka Publisher for this message.

kafka_dlt-exception-fqcn Exception class name for a record published sent to a dead-letter topic.

kafka_dlt-exception_message Exception message for a record published to a dead-letter topic.

kafka_dlt-original-offset Original offset for a record published to a dead-letter topic.

kafka_dlt-original-topic Original topic for a record published to a dead-letter topic.

kafka_dlt-original-partition Original partition for a record published to a dead-letter topic.

kafka_dlt-original-message-key Original message key for a record published to a dead-letter topic.

Custom Message Serialization

By default, Kafka Publisher uses the JSON format.

To use custom serializers and deserializers, do the following:

• Implement custom deserializer for input parameters via the implementation
org.openl.rules.ruleservice.kafka.ser.MessageDeserializer class.

• Register a custom implemented deserializer in the value.serializer Kafka configuration property for
particular consumers.

Date Format Definition and JSON Serialization and Deserialization Configuration

JSON configuration is the same as described for the REST services:

• Defining a Date Format for JSON Serialization and Deserialization

• Configuring JSON Payload Serialization and Deserialization

Note: The same JSON serialization and deserialization configuration is used for REST publisher and Kafka publisher.

Spring Kafka Integration Support

Kafka Publisher supports Spring Kafka headers to work with Spring Kafka Request Reply design pattern
implementation out of the box.

Configuring System Settings

There are several options extending rules behavior in OpenL Tablets:

• Dispatching Table Properties

• Table Dispatching Validation Mode

• Configuring a Number of Threads to Rules Compilation

• Enabling Logging to Console

• Configuring the Instantiation Strategy

These settings are defined in the application.properties configuration file.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 28 of 61

Dispatching Table Properties

Previously selecting tables that correspond to the current runtime context was processed by Java code. Now
rules dispatching is the responsibility of the generated Dispatcher decision table. Such table is generated for
each group of methods overloaded by dimension properties. The Dispatcher table works like all decision tables,
so the first rule matched by properties is executed even if there are several tables matched by properties.
Previously, in Java code dispatching, AmbiguousMethodException would be thrown in such case.

To support both functionalities, the dispatching.mode system property is introduced. It has the following
possible values:

dispatching.mode property values

Value Description

java Dispatching is processed by Java code. The benefit of such approach is stricter dispatching: if several tables
are matched by properties, AmbiguousMethodException is thrown.

dt Deprecated. Dispatching is processed by the Dispatcher decision table.

If the system property is not specified or if the dispatching.mode property has an incorrect value, the Java
approach is used by default.

Table Dispatching Validation Mode

An explanation of table dispatching validation is as follows.

Consider a rule table for which some business dimension properties are set up. There is only one version of this
rule table. The following table describes options of versioning functionality behavior for this case depending on
the dispatching.validation property value located in webstudio\WEB-INF\conf:

Value of dispatching.validation property

Value Versioning behavior description

True Versioning functionality works as for a rule that has only one version. OpenL Tablets reviews
properties values of this rule table and executes the rule if the specified properties values match
runtime context. Otherwise, the No matching methods for context error message is returned.

False OpenL Tablets ignores properties of this rule table, and this rule is always executed and returns the
result value despite of runtime context.

For table testing, dispatching validation is enabled by setting the dispatching.validation property value to
true. The property is located in the application.properties file. In this case, versioning functionality works
as for a rule that has only one version, and OpenL Tablets reviews properties values of this rule table and
executes the rule if the specified properties values match runtime context. In production, this property value
must be set to false.

By default, the dispatching.validation value is set to false in OpenL Tablets Rule Services and to true in
OpenL Tablets WebStudio.

Configuring a Number of Threads to Rules Compilation

The system supports parallel rules compilation. Rules compilation consumes a large amount of memory. If the
system tries to compile too many rules at once, it fails with an out of memory exception.

Use the ruleservice.instantiation.strategy.maxthreadsforcompile property in the
application.properties file to limit the number of threads to compile rules.

By default, only three threads are used to compile rules in parallel:

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 29 of 61

ruleservice.instantiation.strategy.maxthreadsforcompile = 3

For example, to permit only one thread to compile rules, set value to one as follows:

ruleservice.instantiation.strategy.maxthreadsforcompile = 1

Enabling Logging to Console

To enable logging all requests to OpenL Tablets Rule Services and their responds to standard output, set the
ruleservice.logging.enabled property in the application.properties file to true. This feature is very
valuable in development. By default, it is disabled.

Configuring the Instantiation Strategy

The system provides an ability to change an instantiation strategy. The property
ruleservice.instantiation.strategy.lazy is defined in the application.properties file.

By default, the lazy initialization strategy is enabled:

ruleservice.instantiation.strategy.lazy = true

Modules are compiled upon the first request and can be unloaded in future for memory save.

To disable the lazy initialization strategy, set ruleservice.instantiation.strategy.lazy = false. All
modules are compiled on the application launch.

CORS Filter Support

Cross-Origin Resource Sharing (CORS) is a specification which is a standard mechanism that enables cross-origin
requests. The specification defines a set of Access-Control-* headers that allow the browser and server to
communicate about which requests are allowed. The filter also protects against HTTP response splitting. If
request is invalid or is not permitted, the request is rejected with HTTP status code 403 (Forbidden). For more
information on CORS, see https://fetch.spec.whatwg.org/.

The CORS filter supports the following initialization parameters:

CORS initialization parameters

Attribute Description

cors.allowed.origins A list of origins that are allowed to access the resource. A * can be specified to
enable access to resource from any origin. Otherwise, an allowed list of comma-
separated origins can be provided.

Examples: https://www.w3.org, https://www.example.com.

The empty string means that no origin is allowed to access the resource.

cors.allowed.methods A comma separated list of HTTP methods that can be used to access the resource
using cross-origin requests. These methods are also included as a part of the
Access-Control-Allow-Methods header in pre-flight response.

Example: GET,POST.

cors.allowed.headers A comma separated list of request headers for making an actual request. These
headers are also returned as a part of the Access-Control-Allow-Headers
header in pre-flight response.

Example: Origin,Accept.

https://fetch.spec.whatwg.org/
https://tools.ietf.org/html/rfc6454

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 30 of 61

CORS initialization parameters

Attribute Description

cors.preflight.maxage The number of seconds a browser is allowed to cache the result of the pre-flight
request. This attribute is included as a part of the Access-Control-Max-Age
header in the pre-flight response. A negative value prevents a CORS filter from
adding this response header to the pre-flight response.

The default CORS configuration is as follows:

cors.allowed.origins =

cors.allowed.methods = GET,OPTIONS,HEAD,PUT,POST

cors.allowed.headers = Content-Type,Accept,api_key,Authorization

cors.preflight.maxage = 7200

Logging Requests to OpenL Tablets Rule Services and Their Responds in a
Storage

The system provides an ability to store all requests to OpenL Tablets Rule Services and their responds in a
storage. The setting is defined in the application.properties file. The following topics describe logging setup:

• Understanding Logging to an External Storage

• Enabling Logging to an External Storage

• Storing Log Records in Apache Cassandra

• Storing Log Records in Elasticsearch

Understanding Logging to an External Storage

OpenL Tablets Rule Services supports storing requests and responses for SOAP, REST, and Kafka publishers in the
external storage. This feature is designed to support any external storage and use the Apache Casandra or
Elasticsearch out of the box.

For each request to OpenL Tablets Rule Services, the system creates an object of the
org.openl.rules.ruleservice.storelogdata.StoreLogData class, which is populated with data during
request processing and then can be stored in the configured storage. It contains the following data:

org.openl.ruleservice.logging.LoggingInfo class data

Field name Description

requestMessage Request data for logging, such as request body, URL, request header, and request content
type.

responseMessage Response data for logging, such as response body, response status, and response header.

incomingMessageTime Time when request is received by the server.

outcomingMessageTime Time when response message preparation is completed and the message is ready to be sent to
the client.

service OpenL Tablets service used for the call. Data includes service name, compiled OpenL Tablets
rules, and other information.

inputName Method used for the call.

parameters Parameters of the call, which is an array of objects after binding request message to models.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 31 of 61

When the logging data is collected, the system invokes the storing service responsible for saving logging data.
The storing service must implement the
org.openl.rules.ruleservice.storelogdata.StoreLogDataService interface.

Enabling Logging to an External Storage

By default, logging requests to OpenL Tablets Rule Services and their responds is disabled:

ruleservice.store.logs.enabled = false

To enable logging, set ruleservice.store.logs.enabled = true.

Storing Log Records in Apache Cassandra

Apache Cassandra is a free and open-source, distributed, wide column storage database that can be used as
external storage. To start using Apache Cassandra, proceed as follows:

1. Download the OpenL Tablets Rule Services full web application at http://openl-tablets.org/downloads or use
the following Maven command:
mvn dependency:copy -Dartifact=org.openl.rules:org.openl.rules.ruleservice.ws.full:<openl

version here>:war -DoutputDirectory=./

2. Set up Cassandra connection settings defined in the application.properties file as described in the
following lines:
datastax-java-driver.basic.load-balancing-policy.local-datacenter = datacenter1

datastax-java-driver.basic.contact-points.0 = 127.0.0.1:9042

datastax-java-driver.basic.session-keyspace = openl_ws_logging

datastax-java-driver.advanced.protocol.version = V4

datastax-java-driver.advanced.auth-provider.username =

datastax-java-driver.advanced.auth-provider.password =

For more information on Cassandra, see https://docs.datastax.com/en/developer/java-
driver/4.5/manual/core/configuration/. For more information on connection configuration options, see
https://docs.datastax.com/en/developer/java-driver/4.5/manual/core/configuration/reference/.

3. Before running the application, create a keyspace in Cassandra as described in
https://docs.datastax.com/en/cql/3.1/cql/cql_reference/create_keyspace_r.html.

4. To create a schema in the Cassandra database, start OpenL Tablets Rule Services for the first time with the
ruleservice.store.logs.cassandra.schema.create = true property.

By default, this option is enabled. When the schema is created, set this property to the false value.

As a result, the following table with the openl_log_data name is created in the Cassandra database:

LoggingRecord table created in the Cassandra database

Column name Type Description

ID TEXT Unique ID for the request. It is a primary key for the record.

INCOMINGTIME TIMESTAMP Incoming request time.

METHOD_NAME TEXT Method of a service that was called.

OUTCOMINGTIME TIMESTAMP Outgoing response time.

PUBLISHER_TYPE TEXT Request source, such as web service or REST service.

REQUEST TEXT Request body.

RESPONSE TEXT Response body.

SERVICE_NAME TEXT Deployment service that was called.

http://openl-tablets.org/downloads
https://docs.datastax.com/en/developer/java-driver/4.5/manual/core/configuration/
https://docs.datastax.com/en/developer/java-driver/4.5/manual/core/configuration/
https://docs.datastax.com/en/developer/java-driver/4.5/manual/core/configuration/reference/
https://docs.datastax.com/en/cql/3.1/cql/cql_reference/create_keyspace_r.html

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 32 of 61

LoggingRecord table created in the Cassandra database

Column name Type Description

URL TEXT URL of the request.

Note: Only methods annotated with
org.openl.rules.ruleservice.storelogdata.cassandra.annotation.StoreLogDataToCassandra

are used for storing their requests and responses in Apache Cassandra. The system supports customization to use
different tables for each OpenL Tablets project, use product specific table names, and configure a set of columns of
tables. For more information on customization using annotations, see Service Customization through Annotations.

Storing Log Records in Elasticsearch

Elasticsearch is supported as external storage out of the box. Elasticsearch is a distributed, open source search
and analytics engine for all types of data, including textual, numerical, geospatial, structured, and unstructured
data. Raw data flows into Elasticsearch from a variety of sources, including logs, system metrics, and web
applications. This raw data is parsed, normalized, and enriched before it is indexed in Elasticsearch. Once
indexed in Elasticsearch, users can run complex queries against their data and use aggregations to retrieve
complex summaries of their data. For more information on Elasticsearch, see https://www.elastic.co/what-
is/elasticsearch.

The system uses Java High Level REST Client to communicate with the Elasticsearch servers that process
application requests.

To start using ElasticSearch, proceed as follows:

1. Download the OpenL Tablets Rule Services full web application at http://openl-tablets.org/downloads or use
the following Maven command:
mvn dependency:copy -Dartifact=org.openl.rules:org.openl.rules.ruleservice.ws.full:<openl

version here>:war -DoutputDirectory=./

2. Set up Elasticsearch connection settings defined in the application.properties file as follows:
ruleservice.store.logs.elasticsearch.enabled = true

elasticsearch.hosts = http://127.0.0.1:9200

The following properties can be modified to configure Elasticsearch:

Elasticsearch configuration properties

Property Description

ruleservice.store.logs.elasticsearch.enabled To store Elasticsearch logs, this property must be set to true.

elasticsearch.hosts To enable using multiple Elasticsearch servers, use a comma-
separated list. An example is as follows:
elasticsearch.hosts = http://127.0.0.1:9200,

http://127.0.0.1:9201

As a result, the following index with the default openl_log_data name is created in Elasticsearch:

openl_log_data table created in the Elasticsearch database

Column name Type Description

ID TEXT Unique ID for the request. It is a primary key for the record.

INCOMINGTIME TIMESTAMP Incoming request time.

METHOD_NAME TEXT Method of a service that was called.

OUTCOMINGTIME TIMESTAMP Outgoing response time.

https://www.elastic.co/what-is/elasticsearch
https://www.elastic.co/what-is/elasticsearch
http://openl-tablets.org/downloads

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Configuration

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 33 of 61

openl_log_data table created in the Elasticsearch database

Column name Type Description

PUBLISHER_TYPE TEXT Request source, such as web service or REST service.

REQUEST TEXT Request body stored as JSON for search in Kibana.

REQUESTBODY STRING Request body.

RESPONSEBODY STRING Response body stored as JSON for search in Kibana.

RESPONSEBODY STRING Response body.

SERVICE_NAME TEXT Deployment service that was called.

URL TEXT URL of the request.

Note: Only methods annotated with
org.openl.rules.ruleservice.storelogdata.elasticsearch.annotation.StoreLogDataToElastics

earch are used for storing their requests and responses to Elasticsearch . The system supports customization to use
different tables for each OpenL Tablets project, use product specific table names, and configure a set of columns of
the tables. For more information on customization using annotations, see Service Customization through
Annotations.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 34 of 61

5 OpenL Tablets Rule Services Advanced
Configuration and Customization

This section describes OpenL Tablets Rule Services advanced services configuration and customization and
explains the following:

• OpenL Tablets Rule Services Customization Algorithm

• Data Source Listeners

• Service Publishing Listeners

• Dynamic Interface Support

• Service Customization through Annotations

• Variations

• Customization of Log Requests to OpenL Tablets Rule Services and Their Responds in a Storage

5.1 OpenL Tablets Rule Services Customization Algorithm
If a project has specific requirements, OpenL Tablets Rule Services customization algorithm is as follows:

1. Create a Maven project that extends OpenL Tablets Rule Services.

2. Add or change the required points of configuration.

3. Add the following dependency to the pom.xml file with the version used in the project specified:
<dependency>

 <groupId>org.openl.rules</groupId>

 <artifactId>org.openl.rules.ruleservice.ws</artifactId>

 <version>5.X.X</version>

 <type>war</type>

 <scope>runtime</scope>

</dependency>

4. Use the following Maven plugin to control the OpenL Tablets Rule Services building with user’s custom
configurations and classes:
<plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-war-plugin</artifactId>

 <configuration>

 <warSourceDirectory>webapps/ws</warSourceDirectory>

 <!—Define war name here-->

 <warName>${war.name}-${project.version}</warName>

 <packagingExcludes>

 <!—Exclude unnecessary libraries from parent project here-->

 WEB-INF/lib/org.openl.rules.ruleservice.ws.lib-*.jar

 </packagingExcludes>

 <!—Define paths for resources. Developer has to create a file with the same

name to overload existing file in the parent project-->

 <webResources>

 <resource>

 <directory>src/main/resources</directory>

 </resource>

 <resource>

 <directory>war-specific-conf</directory>

 </resource>

 </webResources>

 </configuration>

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 35 of 61

</plugin>

5. If necessary, add customized spring beans into openl-ruleservice-override-beans.xml in
src/main/resources.

5.2 Data Source Listeners
A data source registers data source listeners and notifies some components of OpenL Tablets Rule Services
about modifications. The only available event type on the production repository modification is about newly
added deployment.

A service manager is always a data source listener because it must handle all modifications in the data source.

Users can add their own listener implementing org.openl.rules.ruleservice.loader.DataSourceListener
for additional control of data source modifications with the required behavior and register it in data source via
Spring configuration.

5.3 Service Publishing Listeners
Service publishing listeners notify about the deployed or undeployed OpenL Tablets projects. Users can add their
own listeners implementing org.openl.rules.ruleservice.publisher.RuleServicePublisherListener for
additional control of deploying and undeploying projects with the required behavior and add them to the Spring
configuration. The system automatically finds and registers all Spring beans implemented
RuleServicePublisherListener interface as a publishing listener.

The org.openl.rules.ruleservice.publisher.RuleServicePublisherListener interface has the following
methods:

Method in org.openl.rules.ruleservice.publisher.RuleServicePublisherListener

Inceptor Description

onDeploy(OpenLService) Invoked each time when the OpenL Tablets service is deployed with the
publisher that fires this listener.

onUndeploy(String serviceName) Invoked each time when the service with the defined name is undeployed.

5.4 Dynamic Interface Support
OpenL Tablets Rule Services supports interface generation for services at runtime. This feature is called Dynamic
Interface Support. If a static interface is not defined for a service, the system automatically generates an
interface at runtime with all methods defined in the module or, in case of a multimodule, in the list of modules.

This feature is enabled by default. To use a dynamic interface, do not define a static interface for a service in
rules-deploy.xml service description file.

It is not a good practice to use all methods from a module in a generated interface because of the following
limitations:

• All return types and method arguments in all methods must be transferrable through network.

• An interface for web services must not contain the method designed for internal usage.

The system provides a mechanism for filtering methods in modules by including or excluding them from the
dynamic interface.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 36 of 61

This configuration can be applied to projects using the rules.xml file. An example is as follows:

<project>

 <name>project-name</name>

 <modules>

 <module>

 <name>module-name</name>

 <rules-root path="rules/Calculation.xlsx"/>

 <method-filter>

 <includes>

 <value>.*determinePolicyPremium.*</value>

 <value>.*vehiclePremiumCalculation.*</value>

 </includes>

 </method-filter>

 </module>

 </modules>

 <classpath>

 <entry path="lib/*"/>

 </classpath>

</project>

For filtering methods, define the method-filter tag in the rules.xml file. This tag contains the includes and
excludes tags. The algorithm is as follows:

• If the method-filter tag is not defined in the rules.xml, the system generates a dynamic interface with all
methods provided in the module or modules for multimodule.

• If the includes tag is defined for method filtering, the system uses the methods which names match a
regular expression of defined patterns.

• If the includes tag is not defined, the system includes all methods.

• If the excludes tag is defined for method filtering, the system uses methods which method names do not
match a regular expression for defined patterns.

• If the excludes tag is not defined, the system does not exclude the methods.

If OpenL Tablets Dynamic Interface feature is used, a client interface can also be generated dynamically at
runtime. Apache CXF supports the dynamic client feature. For more information on dynamic interface support
by Apache CXF, see http://cxf.apache.org/docs/dynamic-clients.html.

Note: If a project is empty and does not contain any method, it is unavailable as a service.

5.5 Service Customization through Annotations
This section describes interface customization using annotations. The following topics are included:

• Interceptors for Methods

• Method Return Type Customization through Annotations

• REST Endpoint Customization through Annotations

• Customization through Annotations for Dynamic Generated Interfaces

Interceptors for Methods

Required Maven dependency for OpenL Tablets Rule Services annotations is
org.openl.rules:org.openl.rules.ruleservice.annotation. Use the provided scope for dependency
because this dependency already exists in OpenL Tablets Rule Services and it must not be included in the
deployment distributive to avoid class duplication in the Java ClassLoader.

http://cxf.apache.org/docs/dynamic-clients.html

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 37 of 61

Interceptors for service methods can be specified using the following annotations:

• @ org.openl.rules.ruleservice.core.interceptors.annotations.ServiceCallBeforeInterceptor

This annotation is used to define “before” interceptors for the annotated method. The goal of these
interceptors is to add extra logic before service method invocation, such as validation for service method
arguments, or to change values in input arguments. A class of the “before” interceptor must implement the
org.openl.rules.ruleservice.core.interceptors.ServiceMethodBeforeAdvice interface.

An example is as follows:
public class RequestModelValidator implements ServiceMethodBeforeAdvice {

 public void before(Method interfaceMethod, Object proxy,

 Object... args) throws Throwable {

 if (args == null || args.length == 0) {

 throw new IllegalArgumentException("Service method should have at least one

argument");

 }

 //other validation logic

 }

}

To use the “before” interceptor, proceed as follows:
@ServiceMethodBeforeAdvice({ RequestModelValidator.class })

Result doSomething(RequestModel requestModel);

• @ org.openl.rules.ruleservice.core.interceptors.annotations.ServiceCallAroundInterceptor

This annotation is used to define “around” interceptors. A class for the “around” interceptor must
implement the org.openl.rules.ruleservice.core.interceptors.ServiceMethodAroundAdvice
interface. “Around” interceptors are used to add around logic for service method invocation. An example is
when arguments of the case service method must be converted to another type before using them in
service rules, and the results also require additional processing before return.

An example is as follows:
public class MyMethodAroundInterceptor implements ServiceMethodAroundAdvice<Response> {

 @Override

 public Response around(Method interfaceMethod, Method proxyMethod, Object proxy,

Object... args) throws Throwable {

 Result res = (Result) proxyMethod.invoke(proxy, args);

 return new Response("SUCCESS", res);

 }

}

To use the “around” interceptor, proceed as follows:
@ServiceCallAroundInterceptor({ MyMethodAroundInterceptor.class })

Response doSomething(RequestModel requestModel);

• @ org.openl.rules.ruleservice.core.interceptors.annotations.ServiceCallAfterInterceptor

This annotation is used to defined “after” interceptors. This type of interceptions is used for result
processing or error handling before return by the service method.

The following table describes “after” interceptor types:

Inceptor types for the @ServiceCallAfterInterceptor annotation

Inceptor Description

After

Returning
Intercepts the result of a successfully calculated method, with a possibility of post processing of the
return result, including result conversion to another type. In this case, the type must be specified as the
return type for the method in the service class. After Returning interceptors must be a subclass of
org.openl.rules.ruleservice.core.interceptors.AbstractServiceMethodAfterReturni

ngAdvice.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 38 of 61

Inceptor types for the @ServiceCallAfterInterceptor annotation

Inceptor Description

After

Throwing
Intercepts a method that has an exception thrown, with a possibility of post processing of an error and
throwing another type of exception. After Returning interceptors must be a subclass of
org.openl.rules.ruleservice.core.interceptors.AbstractServiceMethodAfterThrowi

ngAdvice.

Example of the “after” interceptor implementation with after returning logic is as follows:
public class SpreadsheetResultConverter extends

 AbstractServiceMethodAfterReturningAdvice<ResponseDTO> {

 @Override

 public ResponseDTO afterReturning(Method interfaceMethod,

 Object result, Object... args) {

 SpreadsheetResult = (SpreadsheetResult) result;

 return mapSpreadsheetResultToResponseDTO(spreadsheetResult);

 }

 private ResponseDTO mapSpreadsheetResultToResponseDTO(SpreadsheetResult result) {

 ResponseDTO response = new ResponseDTO();

 response.setPremium((Double) result.getFieldValue("$Value$PremiumStep"));

 // Do some other mapping logic...

 return response;

 }

}

Example of the “after” interceptor implementation with after throwing logic is as follows:
public class ExceptionHandlingAdvice extends

 AbstractServiceMethodAfterThrowingAdvice <ResponseDTO> {

 private static final Logger LOG = LoggerFactory

 .getLogger(ExceptionHandlingAdvice.class);

 @Override

 public ResponseDTO afterThrowing(Method iMethod, Exception t, Object... args) {

 LOG.error(t.getMessage(), t);

 return new ResponseDTO("INTERNAL_ERROR", t.getMessage());

 }

}

To use the “after” interceptor, proceed as follows:

@ServiceCallAfterInterceptor({ SpreadsheetResultConverter.class,

 ExceptionHandlingAdvice.class })

ResponseDTO doSometing(Request request);

Use @org.openl.rules.ruleservice.core.interceptors.annotations.NotConvertor or
@org.openl.rules.ruleservice.core.interceptors.annotations.UseOpenMethodReturnType on an
interceptor implementation class when an interceptor must return a type of the generated class that is not
available at compilation time to use as a generic parameter of the interceptor class. The NotConvertor
annotation instructs the system that the interceptor does not change the return type of the method even if
Object or any other class is used as a generic parameter of the class. The UseOpenMethodReturnType
annotation instructs the system that the interceptor returns the original type of the rules method even if
any other type is used as a generic parameter of the interceptor class.

• @ org.openl.rules.ruleservice.core.annotations.ServiceExtraMethod

This annotation is used to define the extra method absent in OpenL rules. Additional method
implementation must implement
org.openl.rules.ruleservice.core.annotations.ServiceExtraMethodHandler interface, and it
exposes methods that differ in signature with the rules or do not exist in the Excel sheet.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 39 of 61

For example, an Excel file contains the String hello(String) method and this method must be exposed as
String hello(Integer).

The advice class uses the same class loader that is used to compile the OpenL Tablets project. It means that a
user can access all datatype classes generated by the system for a particular project. An additional method can
be used when additional mapping between the OpenL Tablets model and external model is required, for
example:

public static class LoadClassExtraMethod implements ServiceExtraMethodHandler<Object> {

 @Override

 public Object invoke(Method interfaceMethod, Object serviceBean, Object... args)

throws Exception {

 // MyBean is Datatype defined in OpenL

 Class<?> myBeanClass = Thread.currentThread().getContextClassLoader()

 .loadClass("org.openl.generated.beans.MyBean");

 Object myBean = myBeanClass.newInstance();

 // … Do some mapping below and then return result

 return myBean;

 }

 }

Note: Java byte code does not have argument names in interfaces, so they are named as 'arg0', 'arg1', and so on. To
request more meaningful names for parameters, use the @
org.openl.rules.ruleservice.core.annotations.Name annotation together with
@ServiceExtraMethod.

Use the org.openl.rules.ruleservice.core.interceptors.IOpenMemberAware and
org.openl.rules.ruleservice.core.interceptors.IOpenClassAware interfaces if a reference to the
compiled IOpenClass or IOpenMember object is required in an interceptor implementation class.

Method Return Type Customization through Annotations

By default, OpenL Tablets applies the
org.openl.rules.ruleservice.core.interceptors.converters.SPRToPlainConverterAdvice interceptor
to all spreadsheet table methods that return SpreadsheetResult and
org.openl.rules.ruleservice.core.interceptors.converters.VariationResultSPRToPlainConverterAd

vice interceptor to all variations methods that correspond to spreadsheet table methods that return
SpreadsheetResult. These annotations transform the spreadsheet table result to the generated Java bean
and return it instead of SpreadsheetResult.

Note: If any interceptor is used on the method, the SPRToPlainConverterAdvice or
VariationResultSPRToPlainConverterAdvice interceptors must be added manually to keep default behavior.

To change default behavior, define @
org.openl.rules.ruleservice.core.interceptors.annotations.ServiceCallAfterInterceptor with an
empty value on the method to return SpreadsheetResult.

REST Endpoint Customization through Annotations

By default, URLs and HTTP method type for methods are determined automatically by the system. The path for
the methods equals the corresponding service method name, and HTTP method type depends on used
arguments: if the service method has at least one argument, a HTTP method type is set to POST, otherwise, to
GET.

The following JAX-RS annotations can be used to override the default behavior of service method publishing:

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 40 of 61

JAX-RS annotations to override the default behavior of service method publishing

Annotation Import details

@POST import javax.ws.rs.POST;

@GET import javax.ws.rs.GET;

@Path import javax.ws.rs.Path;

• @POST annotation overrides a default method type.

Service methods annotated @POST accepts only POST requests. Usage example is as follows:
@POST

MyResponse someMethod();

• @GET annotation overrides a default method type.

Service method annotated @GET accepts only GET requests. Usage example is as follows:
@GET

MyResponse someMethod(MyType myType);

• @Path annotation overrides a default URL method path.

Usage example is as follows:
@Path(“/customPrefix/someMethod”)

MyResponse someMethod(MyType myType);

Required Maven dependency is as follows:

<dependency>

 <groupId>jakarta.ws.rs</groupId>

 <artifactId>jakarta.ws.rs-api</artifactId>

 <version>2.1.5</version>

 <scope>provided</scope>

</dependency>

Note: It is not necessary to declare pairs of @POST + @Path or @GET + @Path because OpenL Tablets provides the
capability to define a single annotation and generate the other one automatically.

All other JAXRS annotations, such as @PUT, @DELETE, @QueryParam, and @PathParam, are also supported by
OpenL Tablets. For more information on JAXRS annotation, see
https://docs.oracle.com/javaee/7/api/javax/ws/rs/package-summary.html.

Customization through Annotations for Dynamic Generated Interfaces

Annotation customization can be used for dynamically generated interfaces. This feature is only supported for
projects that contain the rules-deploy.xml deployment configuration file. To enable customization through
annotation, proceed as follows:

1. Add the annotationTemplateClassName tag to the rules-deploy.xml file.

An example is as follows:
<rules-deploy>

 <isProvideRuntimeContext>true</isProvideRuntimeContext>

 <isProvideVariations>false</isProvideVariations>

 <serviceName>dynamic-interface-test3</serviceName>

 <annotationTemplateClassName>org.openl.ruleservice.dynamicinterface.test.MyTemp

lateClass</annotationTemplateClassName>

 <url></url>

</rules-deploy>

2. Define a template interface with the annotated methods with the same signature as in a generated dynamic
interface.

https://docs.oracle.com/javaee/7/api/javax/ws/rs/package-summary.html

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 41 of 61

This approach supports replacing argument types in the method signature with types assignable from
generated types in the generated interface.

Example: SubType is a subclass of class MyType. Consider the following methods are generated in the
generated interface:
void someMethod(IRulesRuntimeContext context, MyType myType);

void someMethod(IRulesRuntimeContext context, SubType otherType);

Add an annotation to the first method using the same method signature in the template interface as
follows:
@ServiceCallAfterInterceptor(value = { MyAfterAdvice.class })

void someMethod(IRulesRuntimeContext context, MyType myType);

If the MyType class is also generated at runtime, use a super type of the MyType class. An example is as
follows:
@ServiceCallAfterInterceptor(value = { MyAfterAdvice.class })

void someMethod(IRulesRuntimeContext context, @AnyType(".*MyType") Object myType);

This example uses the @ org.openl.rules.ruleservice.core.interceptors.AnyType annotation. If this
annotation is missed, this template method is applied to both methods because Object is assignable from
both types MyType and SubType.

The @AnyType annotation value is a Java regular expression of a canonical class name. Use this annotation if
more details are required to define a template method.

Note: A user can also use class level annotations for a dynamically generated class. It can be useful for JAXWS or JAXRS
interface customization.

5.6 Variations
In highly loaded applications, performance of execution is a crucial point in development. There are many
approaches to speed up the application. One of them is to calculate rules with variations.

A variation stands for additional calculation of the same rule with a slight modification in its arguments.
Variations are very useful when a rule must be calculated several times with similar arguments. The idea of this
approach is to once calculate rules for particular arguments and then recalculate only the rules or steps that
depend on the modified, by variation, fields in those arguments.

The following topics are included:

• Variations Algorithm

• Predefined Variations

• Variations Factory

• Enabling Variations Support

Variations Algorithm

A rule that can be calculated with variations must have the following methods in a service class:

• original method with a corresponding rule signature

• method with injected variations

The method enhanced with variations has a signature similar to the original method. Add the argument of
the org.openl.rules.variation.VariationsPack type as the last argument. The return type must be
generic org.openl.rules.variation.VariationsResult<T>, where T is the return type of the original
method.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 42 of 61

The VariationsPack class contains all required variations to be calculated. The VariationsResult<T>
class contains results of the original calculation, without any modifications of arguments, and all calculated
variations that can be retrieved by variation ID. There can be errors during calculation of a specific variation.
The following methods are used to get result of a particular variation:

Methods for getting result of a particular variation

Method Description

getResultForVariation(String variationID) Returns the result of a successfully calculated
variation.

getFailureErrorForVariation(String variationID) Returns the corresponding error message.

Note: When using a user’s own service class instead of the one generated by default, the original method must be defined
for each method with variations.

Note: The result of the original calculation can be retrieved in the same manner as for all variations, by using the special
Original calculation ID in code as
org.openl.rules.project.instantiation.variation.NoVariation.ORIGINAL_CALCULATION.

Predefined Variations

A variation typically has a unique ID and is responsible for modifying arguments and restoring original values.
The ID is a String value used to retrieve the result of the calculation with this variation.

By default, the variation’s abstract class org.openl.rules.project.instantiation.variation.Variation
has two methods, applyModification and revertModifications. The first method modifies arguments; the
second rolls back the changes. For this purpose, a special instance of Stack is passed to both these methods: in
the applyModification method, the previous values must be stored; in revertModifications, the previous
values can be retrieved from the Stack and saved into arguments.

The following table describes predefined variation types in the org.openl.rules.variation package:

Predefined variation types in the org.openl.rules.variation package

Variation type Description

NoVariation Empty variation without any modifications. It is used for the original calculation and has a
predefined Original calculation ID.

ArgumentReplacementV

ariation
Variation that replaces an entire argument. It was introduced because JXPathVariation
cannot replace a value of a root object, or argument. The argument index, value to be set
instead of the argument, and ID are required to construct this variation.

JXPathVariation Variation that modifies an object field or replaces an element in the array defined by the
special path. JXPath is used to analyze paths and set values to corresponding fields, therefore
use JXPath-consistent path expressions. The following data is required for this variation:

• index of the argument to be modified

• path to the field that must be modified in the JXPath notation

• value to be set instead of the original field value

• ID

For more information on JXPath, see http://commons.apache.org/jxpath/.

ComplexVariation Variation that combines multiple variations as a single variation. It is applicable when
different fields or arguments must be modified.

http://commons.apache.org/jxpath/

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 43 of 61

Predefined variation types in the org.openl.rules.variation package

Variation type Description

DeepCloningVariation Variation used to avoid reverting changes of a specific variation that will be delegated to
DeepCloningVariation. This variation clones user’s arguments and thus allows avoiding
any problems caused by changes in arguments.

This variation is not recommended because of performance drawbacks: the argument
cloning takes time so the variations usage can be useless.

If predefined implementations do not satisfy user needs, implement user’s own type of variation that inherits
the org.openl.rules..variation.Variation class. Custom implementations can be faster than the
predefined variations in case they use direct access to fields instead of a reflection as in JXPathVariation.

Note: Data binding for custom implementations of variation must be provided to pass the variations through SOAP in
OpenL Tablets Rule Services.

Variations Factory

The org.openl.rules.project.VariationsFactory class is a utility class for simple creation of predefined
variations. It uses the following arguments:

Variations factory arguments

Argument Description

variationId Unique ID for a variation.

argumentIndex 0-based index of an argument to be modified.

path Path to the field to be modified, or just a dot . to modify the root object, that is, the argument.

valueToSet Value to be set by path.

cloneArguments Identifier of whether cloning must be used.

Usually VariationsFactory creates the JXPathVariation variation which covers most cases of variations
usage. When a dot . is specified as a path, ArgumentReplacementVariation is constructed. The
cloneArguments option says to VariaitonsFactory to wrap created variation by DeepCloninigVariation.

An alternative way is to use a special VariationDescription bean that contains all fields described previously
in this section. It is useful to transmit a variation in OpenL Tablets Rule Services and define variations in rules.

Enabling Variations Support

Default value for all deployed services is defined in the ruleservice.isSupportVariations property in
application.properties. By default, it is disabled. A variation can be enabled and disabled on the project
level using the rules-deploy.xml deployment configuration file. An example is as follows:

<rules-deploy>

 …

 <isProvideVariations>false</isProvideVariations>

 …

</rules-deploy>

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 44 of 61

5.7 Customization of Log Requests to OpenL Tablets Rule
Services and Their Responds in a Storage

This section describes advanced customization for logging requests to OpenL Tablets Rule Services and their
responds in a storage if different parts of the input and output data must be stored separately. It also describes
how to customize a structure of tables and indexes in a storage.

The following topics are included:

• Storage Service for Log Requests and Their Responds

• Customization for Apache Cassandra

• Customization for Elasticsearch

Storage Service for Log Requests and Their Responds

This section describes storage service used for log requests and responds and includes the following topics:

• Log Request and Response Storage Service Overview

• Collecting Data from Requests and Their Responds and Populating Custom Values

• Log Requests and Their Responds Customization Using Annotations

Log Request and Response Storage Service Overview

OpenL Tablets Rule Services supports the Apace Cassandra and ElasticSearch storages to log request and their
responds out of the box, but this part of the system is designed customizable and extendable via the
org.openl.rules.ruleservice.storelogdata.StoreLogDataService interface to support the third-party
storages.

The StoreLogDataService interface has the following methods:

StoreLogDataService interface methods

Method Description

boolean isEnabled() Identifies whether the log storing service is enabled.

void save(StoreLogData storeLogData) Saves storeLogData data to a storage.

The implementation class of this interface must be registered in the application Spring context. The system
discovers all implementation of the interface automatically and uses all found services at the same time.

org.openl.rules.ruleservice.storelogdata.StoreLogData is a class that contains all available data from
the request and respond. This class has the getCustomValues() method that returns a map for interested
values that can be stored separately from request payload.

Custom implementation of the StoreLogDataService interface supports all features described in this
document.

Annotation on the called method
@org.openl.rules.ruleservice.storelogdata.annotation.SkipFaultStoreLogData instructs the system
to skip storing fault requests and their responds in a storage.

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 45 of 61

Collecting Data from Requests and Their Responds and Populating Custom Values

Populating custom values in the StoreLogData object and collecting data for service methods is defined using
the @org.openl.rules.ruleservice.storelogdata.annotation.PrepareStoreLogData annotation.

@PrepareStoreLogData has following attributes

Attribute Description

value Mandatory reference to the StoreLogDataAdvice interface implementation. The
implementation class defines which data is collected.

bindToServiceMethodAdvice Optional reference to an implementation of the ServiceMethodAdvice interface. It
defines that the implementation of the theStoreLogDataAdvice interface must be
invoked before or after the corresponding ServiceMethodAdvice implementation.
It is used when required data for collecting is not more available after result
transformation.

before Optional attribute specifying the order of the called data collecting advice. If the
bindToServiceMethodAdvice attribute is present, before determines the advice
execution relative to the defined interceptor, otherwise relative to the base method.
The default value is false, that is, execution happens after method or interceptor.

Implement a single method in the StoreLogDataAdvice interface for collecting data to be used along with the
@Value annotation in entities or directly from StoreLogData.getCustomValues().

Using more than one @PrepareStoreLogData to logically decouple the code of collecting a data is allowed for
the same method.

All these annotations can be used on fields or on getter or setter methods in entity classes.

The org.openl.rules.ruleservice.storelogdata.advice.StoreLogDataAdvice interface has only one
method to implement. An example is as follows:

public class CollectDataStoreLogDataAdvice implements StoreLogDataAdvice {

 @Override

 public void prepare(Map<String, Object> values, Object[] args, Object result, Exception

ex) {

 values.put(“state", ((CalculationResult)result).getState());

 }

}

To programmatically control whether a call to the service must be stored or skipped, use the
org.openl.rules.ruleservice.storelogdata.StoreLogDataHolder.get().ignore() line of code in
implementation of StoreLogDataAdvice.

If compound object serialization to string is required in StoreLogDataAdvice, use the
org.openl.rules.ruleservice.storelogdata.advice.ObjectSerializerAware interface. It injects the
org.openl.rules.ruleservice.storelogdata.ObjectSerializer instance automatically via the void
setObjectSerializer(ObjectSerializer objectSerializer) method. ObjectSerializer provides
functionality to serialize an object to a string with the same mechanism used in the invoked publisher. For
example, it produces a JSON string for REST or Kafka services and XML for SOAP services.

Log Requests and Their Responds Customization Using Annotations

OpenL Tablets Rule Services has annotations for mapping requests and their responds data to entity classes. The
org.openl.rules: org.openl.rules.ruleservice.ws.storelogdata Maven dependency is required for the
log requests and their respond annotations. Use the provided scope for dependency as it already exists in

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 46 of 61

OpenL Tablets Rule Services and it must not be included in the deployment distributive to avoid class duplication
in ClassLoader.

The org.openl.rules.ruleservice.storelogdata.StoreLogDataMapper class maps OpenL Tablets
annotations to the entity class.

The following annotations located in the org.openl.rules.ruleservice.storelogdata.annotation package
are supported:

Annotations supported by StoreLogDataMapper

Annotation Field Type Description

IncomingTime ZonedDateTime Incoming request time.

OutcomingTime ZonedDateTime Outgoing response time.

MethodName String Method of a service that is called.

ServiceName String Deployment service name that is called.

Publisher String Request source, such as web service or REST service or Kafka.

Request String Request body, such as JSON for REST service, XML for SOAP service,
and message body for Kafka.

Response String Response body, such as JSON for REST service, XML for SOAP service,
and message body for Kafka.

Url String URL of the request if available.

Value Object Value from the map that is returned by StoreLogData
.getCustomValues()

KafkaMessageHeader byte[] Kafka message header data. The value attribute with a defined
header name is required. The type attribute is used to define a
producer or consumer message to use.

All annotations described in this section have an optional converter attribute for converting a collected type
into the required field type. Use implementation of the
org.openl.rules.ruleservice.storelogdata.Converter interface for the convertor attribute. A usage
example of this interface is as follows:

public final class ZonedDataTimeToDateConvertor implements Converter<ZonedDateTime, Date> {

 @Override

 public Date apply(ZonedDateTime value) {

 return value != null ? Date.from(value.toInstant()) : null;

 }

}

Customization for Apache Cassandra

This section describes customization for Apache Cassandra and automatically creating a table schema for entity
classes. The following topics are described:

• Log Requests and Responds Customization for Apache Cassandra

• Automatically Creating a Cassandra Table Schema Creation for Entity Classes

Log Requests and Responds Customization for Apache Cassandra

Service storing log requests and their responds for Apache Cassandra requires a Cassandra driver version 4.x.
The Cassandra driver uses a new mapping model between object in the code and a table in a database. For more

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 47 of 61

information on mapping, see https://docs.datastax.com/en/developer/java-driver/4.3/manual/mapper/. The
nutshell working with this model assumes that there are three objects: Entity, Dao, and Mapper interface.

For a method, to enable logging requests and their responds to Apache Cassandra, annotate calling method with
the @org.openl.rules.ruleservice.storelogdata.cassandra.annotation.StoreLogDataToCassandra
annotation. The annotation has an optional attribute that obtains entity classes. If @StoreLogDataToCassandra
is used with an empty value, the default table described in Storing Log Records in Apache Cassandra is used. If
more than one entity class is used in the value attribute for the @StoreLogDataToCassandra annotation, the
system splits data and stores it in multiple Cassandra tables.

An entity is a simple data container that represents a row in the product table. For more information on entities,
see https://docs.datastax.com/en/developer/java-driver/4.3/manual/mapper/entities/.

Cassandra entity example is as follows:

@Entity

@EntitySupport(PersonOperations.class)

@CqlName("person")

public class Person {

 @PartitionKey()

 @Value("id")

 private String id;

 @PartitionKey(1)

 @Value(value = "birthday")

 private ZonedDateTime birthday;

 @Request

 private String request;

 @Response

 private String response;

…

}

A data access object (DAO) defines a set of query methods to insert entities into a storage. For more
information on DAO, see https://docs.datastax.com/en/developer/java-driver/4.3/manual/mapper/daos/.

DAO interface example to insert a Person entity is as follows:

@Dao

public interface PersonDao {

 @Insert

 CompletionStage<Void> insert(Person entity);

}

Mapper interface is a top-level entry point for mapper features used to obtain DAO instances. For more
information on Mapper interface, see https://docs.datastax.com/en/developer/java-
driver/4.3/manual/mapper/mapper/.

Mapper example that obtains PersonDao is as follows:

@Mapper

public interface PersonMapper {

 @DaoFactory

 PersonDao getDao();

}

Generate an implementation for these interfaces to use it at runtime. To generate the code annotation
processor, add it to the Maven build script. For more information on how to configure the annotation processor,
see https://docs.datastax.com/en/developer/java-driver/4.3/manual/mapper/config/.

An example of using Maven plugin to generate implementations is as follows:

https://docs.datastax.com/en/developer/java-driver/4.3/manual/mapper/
https://docs.datastax.com/en/developer/java-driver/4.3/manual/mapper/entities/
https://docs.datastax.com/en/developer/java-driver/4.3/manual/mapper/daos/
https://docs.datastax.com/en/developer/java-driver/4.3/manual/mapper/mapper/
https://docs.datastax.com/en/developer/java-driver/4.3/manual/mapper/mapper/
https://docs.datastax.com/en/developer/java-driver/4.3/manual/mapper/config/

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 48 of 61

<plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <annotationProcessorPaths>

 <path>

 <groupId>com.datastax.oss</groupId>

 <artifactId>java-driver-mapper-processor</artifactId>

 <version>${cassandra.driver.version}</version>

 </path>

 </annotationProcessorPaths>

 </configuration>

</plugin>

The @org.openl.rules.ruleservice.storelogdata.cassandra.annotation.EntitySupport annotation is
used to define a class that instantiates a mapper instance with generated mapper builder and implements insert
operation. This annotation must be used on the entity class as follows:

@Entity

@EntitySupport(PersonOperations.class)

@CqlName("person")

public class Person {

 …

}

public class PersonOperations implements EntityOperations<PersonDao, Person> {

 @Override

 public PersonDao buildDao(CqlSession cqlSession) throws DaoCreationException {

 PersonMapper entityMapper = new PersonMapperBuilder(cqlSession).build();

 return entityMapper.getDao();

 }

 @Override

 public CompletionStage<Void> insert(PersonDao personDao, Person person) {

 return personDao.insert(person);

 }

}

Automatically Creating a Cassandra Table Schema for Entity Classes

The system uses the ClassLoader CQL scripts that are located in the same package and have the same names as
entity classes and the .cql file extension to create Cassandra schema tables automatically on application
launch.

Cassandra identifiers, such as keyspace, table, and column names, are case-insensitive by default. There are
several naming strategies to map names and fields. By default , it is SNAKE_CASE_INSENSITIVE that divides the
Java name into words, splits on upper-case characters, lower-cases everything concatenates the words with
underscore separators, and makes the result a case-insensitive CQL name. For example, Product => product,
productId => product_id.

The default strategy can be modified. For more information on naming strategies, see
https://docs.datastax.com/en/developer/java-driver/4.3/manual/mapper/entities/#naming-strategy.

An example is as follows:

CREATE TABLE IF NOT EXISTS person(

 id text,

 birthday timestamp,

 request text,

 response text,

 …

}

https://docs.datastax.com/en/drivers/java/4.3/com/datastax/oss/driver/api/mapper/entity/naming/NamingConvention.html#SNAKE_CASE_INSENSITIVE
https://docs.datastax.com/en/developer/java-driver/4.3/manual/mapper/entities/#naming-strategy

OpenL Tablets Rule Services Usage and Customization OpenL Tablets Rule Services Advanced Configuration and Customization

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 49 of 61

Customization for Elasticsearch

OpenL Tablets Rule Services uses Spring Data Elasticsearch REST template implementation to store requests and
their responds to Elasticsearch.

To enable logging requests and their responses to Elasticsearch, mark the method with the
org.openl.rules.ruleservice.storelogdata.elasticsearch.annotation.StoreLogDataToElasticsearch
annotation. It is similar to @StoreLogDataToCassandra described in Log Requests and Responds Customization
for Apache Cassandra, and it has entity classes as optional attributes.

If entity classes are not defined in @StoreLogDataToElasticsearch, all records are stored in the index
described in Storing Log Records in Elasticsearch.

If only one entity class is defined, for example,
@StoreLogDataToElasticsearch(CustomElasticEntity.class), the system uses an index defined in the
custom entity.

If multiple entity classes are defined, for example, @StoreLogDataToElasticsearch(ElasticEntity1.class,
ElasticEntity2.class, ..., ElasticEntityN.class), the system splits data into multiple Elasticsearch
indexes.

Custom Elasticsearch entity example is as follows:

@Document(indexName = "person")

public class Person {

 @WithStoreLogDataConverter(converter = RandomUUID.class)

 @Id

 private String id;

 @IncomingTime(converter = ZonedDataTimeToDateConvertor.class)

 private Date incomingTime;

 @OutcomingTime(converter = ZonedDataTimeToDateConvertor.class)

 private Date outcomingTime;

 @Request

 private String requestBody;

 @Response

 private String responseBody;

 @WithStoreLogDataConverter(converter = JSONRequest.class)

 @QualifyPublisherType(PublisherType.RESTFUL)

 private Object request;

 @WithStoreLogDataConverter(converter = JSONResponse.class)

 @QualifyPublisherType(PublisherType.RESTFUL)

 private Object response;

}

Document annotation identifies a domain object to be persisted in Elasticsearch.

To store information from requests and responses and make it searchable, that is, filter the entities in the index
by parameters which were used in request or response, for example, in Kibana,
org.openl.rules.ruleservice.storelogdata.elasticsearch.JSONRequest and
org.openl.rules.ruleservice.storelogdata.elasticsearch.JSONResposne converters must be used.

OpenL Tablets Rule Services Usage and Customization Appendix A: Tips and Tricks

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 50 of 61

Appendix A: Tips and Tricks
This appendix provides useful additional information on OpenL Tablets Rule Services usage and customization
and includes the following topics:

• Using OpenL Tablets Rule Services from Java Code

• Using OpenL Tablets REST Services from Java Code

Using OpenL Tablets Rule Services from Java Code
This section illustrates how to write a client code that invokes OpenL Tablets Rule Services projects. Another way
can be used to invoke services, but it is recommended to use Apache CXF framework to prevent additional effort
for data binding.

A project in OpenL Tablets Rule Services can be exposed via a static interface or dynamic interface generated in
runtime. A client code is different in each case. If the project uses a static interface, use the ClientFactoryBean
class from CXF. For more information on using CXF for a static interface, see CXF documentation.

The following example illustrates client code generation for the MyClass static interface:

ClientProxyFactoryBean clientProxyFactoryBean = new ClientProxyFactoryBean();

clientProxyFactoryBean.setServiceClass(MyClass.class);

clientProxyFactoryBean.setWsdlLocation(getAddress() + "?wsdl");

//OpenL databinding factory

AegisDatabindingFactoryBean aegisDatabindingFactoryBean = new AegisDatabindingFactoryBean();

//Set variations support. Recommend using the same value as a project in server. Can’t be

false, if service uses variations feature.

aegisDatabindingFactoryBean.setSupportVariations(true);

aegisDatabindingFactoryBean.setWriteXsiTypes(true);

//In case you need custom binding classes.

Set<String> overideTypes = new HashSet<String>();

overideTypes.add(<Some class>.class.getCanonicalName());

aegisDatabindingFactoryBean.setOverrideTypes(overideTypes);

clientProxyFactoryBean.setDataBinding(aegisDatabindingFactoryBean.createAegisDatabinding());

MyClass myClass =(MyClass) clientProxyFactoryBean.create();

A dynamic client can be used for both static interface and dynamic interface generated in runtime configuration.
A dynamic client is a feature of CXF framework. For dynamic interface, use the JaxWsDynamicClientFactory
factory. For more information on using CXF for a dynamic interface, see CXF documentation.

The following example illustrates creation of a dynamic client:

JaxWsDynamicClientFactory dynamicClientFactory = JaxWsDynamicClientFactory.newInstance();

ClassLoader oldClassLoader = Thread.currentThread().getContextClassLoader();

List<String> bindingFiles = new ArrayList<String>() {

 private static final long serialVersionUID = 1L;

 {

 add("binding.xml");

 }

 };

Client client = dynamicClientFactory.createClient(<Service WSDL URL>, bindingFiles);

Binding.xml file content is as follows:

<jaxb:bindings version="2.2" xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"

xmlns:xs="http://www.w3.org/2001/XMLSchema">

OpenL Tablets Rule Services Usage and Customization Appendix A: Tips and Tricks

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 51 of 61

 <jaxb:globalBindings generateElementProperty="false" collectionType="indexed"/>

</jaxb:bindings>

Using OpenL Tablets REST Services from Java Code
This section describes how to write a client code that invokes OpenL Tablets REST services projects. Another way
can be used to invoke services, but it is recommended to use Apache CXF framework to prevent additional effort
for data binding.

The following example illustrates client code generation for the JSON content type:

JacksonObjectMapperFactoryBean jacksonObjectMapperFactoryBean = new

JacksonObjectMapperFactoryBean();

jacksonObjectMapperFactoryBean.setEnableDefaultTyping(true);

Set<String> overrideTypes = new HashSet<String>();

overrideTypes.add(SomeClass.class.getName());

jacksonObjectMapperFactoryBean.setOverrideTypes(overrideTypes);

ObjectMapper mapper = jacksonObjectMapperFactoryBean.createJacksonDatabinding();

final JacksonJsonProvider jsonProvider = new JacksonJsonProvider();

WebClient webClient = WebClient.create#REST service url#,

 new ArrayList<Object>() {

 private static final long serialVersionUID = 5636807402394548461L;

 {

 add(jsonProvider);

 }

 });

webClient.type(MediaType.APPLICATION_JSON);

Response response = webClient.get();

Note: If you use POST request for more than one argument, create a DTO that contains field with method argument names
and send this DTO object via webClient.post() method.

OpenL Tablets Rule Services Usage and Customization Appendix B: Projects on the OpenL Tablets Rule Services Launch

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 52 of 61

Appendix B: Projects on the OpenL Tablets Rule
Services Launch
When OpenL Tablets Rule Services is launched using the openl:port/webservice link, the system displays a list
of deployed projects.

Figure 4: List of projects displayed upon OpenL Tablets Rule Services launch

The successfully deployed projects appear with the green check mark that can be clicked to expand the list of
available methods for the project.

Figure 5: Expanding project methods

OpenL Tablets Rule Services Usage and Customization Appendix B: Projects on the OpenL Tablets Rule Services Launch

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 53 of 61

Projects deployed with errors are marked with the red cross mark that is clickable and displays the error
message.

Figure 6: Viewing error message for a project

OpenL Tablets Rule Services Usage and Customization Appendix C: Types of Exceptions in OpenL Tablets Rule Services

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 54 of 61

Appendix C: Types of Exceptions in OpenL Tablets
Rule Services
The following table describes exception types in OpenL Tablets Rule Services:

Exception types in OpenL Tablets Rule Services

Cause Status
code

REST SOAP

error("Some message")
in rules

400 {

 message :

"Some message",

 type :

"USER_ERROR"

}

<soap:Envelope>

 <soap:Body>

 <soap:Fault>

 <faultcode>soap:Server</faultcode>

 <faultstring>Some

message</faultstring>

 <detail>

 <type>USER_ERROR</type>

 </detail>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

Runtime execution
error in OpenL rules,
such as NPE, CCE, and
DivByZero.

500 {

 message :

"Cannot convert

'1ab2' to

Double",

 type :

"RULES_RUNTIME"

}

<soap:Envelope>

 <soap:Body>

 <soap:Fault>

 <faultcode>soap:Server</faultcode>

 <faultstring>Cannot convert '1ab2'

to Double</faultstring>

 <detail>

 <type>RULES_RUNTIME</type>

 </detail>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

Compilation and
parsing errors.

500 {

 message :

"Missed

condition column

in Rules table",

 type :

"COMPILATION"

}

<soap:Envelope>

 <soap:Body>

 <soap:Fault>

 <faultcode>soap:Server</faultcode>

 <faultstring>Missed condition column

in Rules table</faultstring>

 <detail>

 <type>COMPILATION</type>

 </detail>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

Other exception
outside the OpenL
engine, such as NPE,
CCE, and
AccessException.

500 {

 message :

"Cannot be

null",

 type :

"SYSTEM"

}

<soap:Envelope>

 <soap:Body>

 <soap:Fault>

 <faultcode>soap:Server</faultcode>

 <faultstring>Cannot be

null</faultstring>

 <detail>

 <type>SYSTEM</type>

 </detail>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

OpenL Tablets Rule Services Usage and Customization Appendix C: Types of Exceptions in OpenL Tablets Rule Services

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 55 of 61

Exception types in OpenL Tablets Rule Services

Cause Status
code

REST SOAP

Validation errors in
input parameters, such
as a value outside of a
valid domain or wrong
value in the context.

500 {

 message :

"'Mister' is

outside of valid

domain ['Male',

'Female']",

 type :

"RULES_RUNTIME"

}

<soap:Envelope>

 <soap:Body>

 <soap:Fault>

 <faultcode>soap:Server</faultcode>

 <faultstring>'Mister' is outside of

valid domain ['Male',

'Female']</faultstring>

 <detail>

 <type>RULES_RUNTIME</type>

 </detail>

 </soap:Fault>

 </soap:Body>

</soap:Envelope>

OpenL Tablets Rule Services Usage and Customization Appendix D: OpenAPI Support

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 56 of 61

Appendix D: OpenAPI Support
Swagger is an open-source software framework backed by a large ecosystem of tools that helps developers
design, build, document, and consume RESTful web services. While most users identify Swagger by the Swagger
UI tool, the Swagger toolset includes support for automated documentation, code generation, and test-case
generation. For more information on Swagger, see https://swagger.io/docs/.

In OpenL, Swagger v3 (OpenAPI) is used. It allows directly accessing project methods, data types, and methods,
and enables simple, convenient, and quick running or testing of rules deployed as services.

To use Swagger, in OpenL Tablets Rule Services, click the Swagger (UI) link, select the required rule, click Try it
out, enter input parameters, and click Execute.

Figure 7: Using Swagger UI

https://swagger.io/docs/

OpenL Tablets Rule Services Usage and Customization Appendix E: Programmatically Deploying Rules to a Repository

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 57 of 61

Appendix E: Programmatically Deploying Rules to a
Repository
If a user does not use OpenL Tablets WebStudio deploy functionality to locate a project with rules in the
database repository, use the deploy(File zipFile, String config) method of the
org.openl.rules.workspace.deploy.ProductionRepositoryDeployer class in the WEB-
INF\lib\org.openl.rules.workspace-5.X.X.jar library.

The first method parameter zipFile contains the path to the project zip file, and the config parameter sets the
location of the deployer.properties file, containing the same properties as described in Configuring a Data
Source.

OpenL Tablets Rule Services Usage and Customization Appendix F: Backward Compatibility Settings

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 58 of 61

Appendix F: Backward Compatibility Settings
This appendix describes backward compatibility settings and includes the following topics:

• Version in Deployment Name

• Custom Spreadsheet Type

Version in Deployment Name
If the Deployment repository is created in an OpenL Tablets version older than 5.20, the Version in deployment
name option must be enabled for backward compatibility.

The 5.20 version of the OpenL Tablets Deployment repository contains only actual deployments which are
exposed as services. Each new deployment updates the current deployment, while older versions are hidden in
history and cannot be loaded into the RuleService directly. Different API versions of services are located in
different deployments. They are distinguished by a suffix generated in OpenL Tablets WebStudio according to
the API version in rules-deploy.xml. As a result, services are exposed more quickly. However, if a user created
a repository in the OpenL Tablets version older than 5.20 and migrated to a newer OpenL Tablets Rule Services,
enable the Version in deployment name option to expose services correctly.

In this case, add the following property to the application.properties file:

version-in-deployment-name = true

If you create a new repository, omit this property or set it to false.

Custom Spreadsheet Type
In OpenL Tablets, custom spreadsheet type is used by default. To enable support of the previously created rules
based on other types, in the application.properties configuration file, set this property to false.

OpenL Tablets Rule Services Usage and Customization Appendix G: Deployment Project ZIP Structure

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 59 of 61

Appendix G: Deployment Project ZIP Structure
Deployment projects described in this section can be built via OpenL Maven Plugin or archived manually. The
following topics are included:

• Single Project Deployment Structure

• Multiple Projects Deployment Structure

Single Project Deployment Structure
Deployable single project must be archived into ZIP file and have the following structure:

deployment.zip:

 rules.xml OpenL Tablets project descriptor

 rules-deploy.xml OpenL Tablets project deployment configuration

 *.xlsx Excel files with rules

OpenL Tablets project descriptor and project deployment configuration are optional and can be skipped in
deployment archive.

Multiple Projects Deployment Structure
Deployable multiple projects must be archived into ZIP file and have the following structure:

deployment.zip:

 deployment.yaml OpenL Tablets deployment descriptor

 project-1 OpenL Tablets project folder #1

 rules.xml

 rules-deploy.xml

 *.xlsx

 project-2 OpenL Tablets project folder #2

rules.xml

 rules-deploy.xml

 *.xlsx

 project-* OpenL Tablets project folder #N

rules.xml

 rules-deploy.xml

 *.xlsx

This type of deployment is useful when several projects have mutual dependencies and must be deployed as
single deployment.

OpenL Tablets deployment descriptor is a marker which tells OpenL Tablets Engine that this type of deployment
may contain several OpenL Tablets projects. This file is mandatory and may optionally contain the name property
to customize deployment name:

name: openl-multiple-project-deployment

OpenL Tablets Rule Services Usage and Customization Appendix H: Manifest File for Deployed Projects

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 60 of 61

Appendix H: Manifest File for Deployed Projects
When a user deploys the OpenL Tablets project from OpenL Tablets WebStudio or using the OpenL Tablets
Maven plugin, the MANIFEST.MF file is generated. This file contains information about deployment author,
deployment time, project version, and OpenL Tablets version used for deployment.

If OpenL Tablets Maven plugin is used for deployment, the manifest file contains the following information:

Manifest file contents for OpenL Tablets Maven plugin deployed project

Attribute Description

Build-Date Current zone datetime in the ISO8601 format.

Built-By Name of the user currently logged in.

Created-By OpenL Maven Plugin <OpenL version>

Implementation-Title Deployment project name. Default format is project.groupId:project.artifactId.

Implementation-Version Project version from the Maven pom.xml file.

Implementation-Vendor Deployment project vendor. By default, it is project organization.

If the project is deployed in OpenL Tablets WebStudio, the manifest file contains the following information:

Manifest file contents for a project deployed in OpenL Tablets WebStudio

Attribute Description

Build-Date Current zone datetime.

Build-Number Git revision ID or database revision value.

Built-By Name of the user currently logged in OpenL Tablets WebStudio.

Implementation-Title Deployment project name.

Branch-Name Git branch if the project is connected to Git.

Created-By OpenL Tablets WebStudio version.

The manifest file is available in OpenL Tablets Rule Services, on the main page, for each deployed service.

Figure 8: Manifest file available for the deployed project

If the project was deployed in a different way and it does not contain the manifest file, no link to it appears after
the project name.

An example of the file contents is as follows:

OpenL Tablets Rule Services Usage and Customization Appendix H: Manifest File for Deployed Projects

© 2004-2021 OpenL Tablets
OpenL Tablets 5.24 Page 61 of 61

Figure 9: Manifest file contents example

	1 Preface
	1.1 Audience
	1.2 How This Guide Is Organized
	1.3 Related Information
	1.4 Typographic Conventions

	2 Introduction
	3 Rule Services Core
	3.1 Adding Dependencies into the Project
	3.2 Configuring Spring Integration for Rule Services Core
	Adding a Bean Configuration File to the Spring Context Definition
	Simple Java Frontend Implementation

	3.3 Customizing and Configuring Rule Services Core

	4 OpenL Tablets Rule Services Configuration
	4.1 OpenL Tablets Rule Services Default Configuration
	4.2 OpenL Tablets Rule Services Default Configuration Files
	4.3 Service Manager
	4.4 Configuration Points
	Configuring a Data Source
	File System
	Relational Database
	Amazon AWS S3
	GIT
	Classpath JAR

	Service Configurer
	Understanding Service Configurer
	Deployment Configuration File
	Service Description
	Configuring the Deployment Filter

	Service Exposing Methods
	CXF SOAP Publisher
	Configuring Aegis Databinding

	CXF REST Publisher
	Configuring HTTP Status for Responses
	Defining a Date Format for JSON Serialization and Deserialization
	Configuring JSON Payload Serialization and Deserialization

	RMI Publisher
	Kafka Publisher
	Modes for Exposing Services
	Enabling Kafka Publisher for a Service
	Configuring Application Level Kafka Settings
	Configuring Service Level Kafka Settings

	Supported Message Headers
	Custom Message Serialization
	Date Format Definition and JSON Serialization and Deserialization Configuration
	Spring Kafka Integration Support

	Configuring System Settings
	Dispatching Table Properties
	Table Dispatching Validation Mode
	Configuring a Number of Threads to Rules Compilation
	Enabling Logging to Console
	Configuring the Instantiation Strategy

	CORS Filter Support
	Logging Requests to OpenL Tablets Rule Services and Their Responds in a Storage
	Understanding Logging to an External Storage
	Enabling Logging to an External Storage
	Storing Log Records in Apache Cassandra
	Storing Log Records in Elasticsearch

	5 OpenL Tablets Rule Services Advanced Configuration and Customization
	5.1 OpenL Tablets Rule Services Customization Algorithm
	5.2 Data Source Listeners
	5.3 Service Publishing Listeners
	5.4 Dynamic Interface Support
	5.5 Service Customization through Annotations
	Interceptors for Methods
	Method Return Type Customization through Annotations
	REST Endpoint Customization through Annotations
	Customization through Annotations for Dynamic Generated Interfaces

	5.6 Variations
	Variations Algorithm
	Predefined Variations
	Variations Factory
	Enabling Variations Support

	5.7 Customization of Log Requests to OpenL Tablets Rule Services and Their Responds in a Storage
	Storage Service for Log Requests and Their Responds
	Log Request and Response Storage Service Overview
	Collecting Data from Requests and Their Responds and Populating Custom Values
	Log Requests and Their Responds Customization Using Annotations

	Customization for Apache Cassandra
	Log Requests and Responds Customization for Apache Cassandra
	Automatically Creating a Cassandra Table Schema for Entity Classes

	Customization for Elasticsearch

	Appendix A: Tips and Tricks
	Using OpenL Tablets Rule Services from Java Code
	Using OpenL Tablets REST Services from Java Code

	Appendix B: Projects on the OpenL Tablets Rule Services Launch
	Appendix C: Types of Exceptions in OpenL Tablets Rule Services
	Appendix D: OpenAPI Support
	Appendix E: Programmatically Deploying Rules to a Repository
	Appendix F: Backward Compatibility Settings
	Version in Deployment Name
	Custom Spreadsheet Type

	Appendix G: Deployment Project ZIP Structure
	Single Project Deployment Structure
	Multiple Projects Deployment Structure

	Appendix H: Manifest File for Deployed Projects

